
UNITED STATES DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

Digital Mapping of Sidescan Sonar Data
With the Woods Hole Image Processing System Software

By

Valerie Paskevich1

Open-File Report 92-536

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey Editorial
standards. Use of tradenames is for purpose of identification only and does not constitute endorsement by
the U. S. Geological Survey.

September 1992
(Revised June 1993)

1Woods Hole, MA. 02543

i

CONTENTS

Abstract 1

Introduction 1

Mapping Procedure 3
Geographic placement of the sidescan sonar image pixels:

Programs gss, gssv and gss_vel 4
Program proj 5
Program projss 6

Mapping Example 8

Map Completion 16
Stenciling 17
Two degree GLORIA quadrangle 18

Summary 19
Acknowledgements 19

APPENDIXES

A - WHIPS program documentation. 23

WHIPS program listing 25
avg_heading 27
avg_position 31
dk2dk 33
filter 35
gss 40
gss_vel 45
gssv 49
listhdr 53
lowpass2b2 55
median3 57
mode3 59
mode5 61
projss 63
qmos 67
quickview 69
raw2whips 71
ssdk2dk 73
sshead 75

ii

sumss 77
whips2raw 81

B - Pass 13 processing summary 83

C - Example processing summary 85

D - Two degree quadrangle processing summary 87

References 91

FIGURES

 1 - UTM map placed in image space. 7
 2 - Pass-13 pre-processed without velocity correction applied. 8
 3 - Pass-13 pre-preprocessed with velocity correction applied. 10
 4 - Pass-13 non-velocity corrected and mapped. 12
 5 - Pass-13 velocity corrected and mapped. 13
 6 - Pass-13 velocity corrected and mapped simultaneously. 13
 7 - Difference between Figure 5 and Figure 6. 14
 8 - Sonar swath mapped with heading averaged by 3 lines. 15
 9 - Sonar swath mapped with heading averaged by 5 lines. 15
10 - Sonar swath mapped with heading averaged by 7 lines. 15
11 - Sonar swath mapped with heading averaged by 9 lines. 15
12 - Pass 12 and 13 mapped and combined. 16
13 - East component filtered and completed. 17
14 - West component filtered and completed. 17
15 - East and west components stenciled and combined. 18
16 - Completed two degree GLORIA quadrangle map. 21

1

Abstract

Since 1985, the Branch of Atlantic Marine Geology has been involved in collecting, processing
and digitally mosaicking high and low resolution sidescan sonar data. In the past, processing and
digital mosaicking has been accomplished with a dedicated, shore-based computer system.
Recent development of a UNIX-based image-processing software system includes a series of task
specific programs for pre-processing sidescan sonar data. To extend the capabilities of the
UNIX-based programs, development of digital mapping techniques have been developed. This
report describes the initial development of an automated digital mapping procedure. Included is
a description of the programs and steps required to complete the digital mosaicking on a UNIX-
based computer system, and a comparison of techniques that the user may wish to select.

Introduction

To process, map and digitally mosaic sidescan sonar data, the Branch has utilized the Mini Image
Processing System (MIPS) software (Chavez, 1984) first on a Digital Equipment Corporation
(DEC) PDP 11/73 computer system with RSX-11/M+ operating system and, more recently, on a
DEC MicroVAX-II computer system with VMS operating system. Recent development of a
UNIX-based image processing software with sidescan sonar specific programs has resulted in a
shift to a UNIX-based system. To extend the UNIX-based sidescan sonar support, a series of
task specific programs were written to support the development of digital mapping techniques for
this unique dataset. It is assumed that the user is familiar with the sidescan sonar pre-processing
requirements and detailed discussion of that subject is not to be found here. Discussion of
sidescan sonar processing techniques are available elsewhere, for example, Chavez, 1986, Miller
et al, 1991, Paskevich, 1992. Paskevich (1992) provides an in-depth discussion of pre-processing
using the UNIX based software.

In the past, digital mapping and mosaicking of sidescan sonar data has been a user intensive job.
To place a swath of sidescan sonar data within a specific map area, the user was required to select
4 points along nadir to be used to tie the sonar strip down to the map area. Additional
bookkeeping and mathematical computations were required by the user to provide the necessary
information to the various programs. To complete the initial mapping process, the user needed
to execute several programs that included geometric transformation routines. Interpolation and
rubber-sheet stretching of the imagery between the selected points was applied by the
transformation programs to place the selected line segment in the requested cartographic space.
This procedure was successful with straight-line segments, but was not useful with sinuous
tracklines. Once the individual swaths were mapped, they often required additional registration
and warping to match features from adjacent swaths.

For this new mapping procedure, the sidescan sonar data must be in the WHIPS format
(Paskevich, 1992) which utilizes the Unidata NetCDF data access software (Unidata, 1991) and
must contain the necessary sonar fish information. The new mapping procedure provides a
simpler, more automated, method of mapping sidescan sonar data and works well with sinuous
track lines. In general, a swath of data which took approximately 1 to 1 1/2 hours to prepare and
map with the older method may now be accomplished in approximately 20 to 30 minutes with
less user intervention. Of course these timings may vary depending on the size and scale of the
sonar image being mapped. The new method also takes into account the fish heading of the
individual scan rather than an overall heading of the entire swath and provides a more accurate
mapping of the sonar scans and swaths.

One drawback to the method discussed in this report can be the holes or gaps that occur during
the placement of the consecutive lines of sonar data. Since the heading values for the sonar are
critical in placing the sonar pixels, minor fluctuation in headings that can occur between the

2

adjacent lines can cause the lines to overwrite on another rather than being placed neatly
alongside each other. The overwriting of the adjacent lines and the resulting gaps can be
minimized by smoothing the heading or fish coordinates contained in the sonar header before
beginning the mosaicking procedure.

By processing the sidescan sonar data on UNIX workstations, we are able to take advantage of
the UNIX program proj (Evenden, 1990). Program proj currently allows the user to select from
approximately 70+ map projections for their final map product. Program proj is fully
documented. The source code and documentation for proj may be obtained via anonymous ftp at
kai.er.usgs.gov (128.128.40.69).

With the exception of program proj , programs utilized to complete the sidescan sonar mapping
are a subset of WHIPS. Complete documentation for the WHIPS programs utilized in the
mapping procedure, along with various utility programs, may be found in Appendix A. Those
programs would include:

avg_heading apply a running average to the heading values contained in a
WHIPS netCDF sidescan sonar image header.

avg_position apply a running average to the fish positions contained in a
WHIPS netCDF sidescan sonar image header.

dk2dk create a new WHIPS netCDF image file by extracting a sub-
area from an existing WHIPS image.

filter applies a low-pass, high-pass, zero replacement or divide
filter to an image.

gss computes geographic coordinates of sidescan sonar pixels.

gss_vel computes geographic coordinates of sidescan sonar pixels
and applies the necessary velocity correction to the sonar
swath.

gssv computes geographic coordinates of sidescan sonar pixels
from a velocity corrected image.

listhdr list the contents of a sidescan sonar header in a WHIPS
image.

lowpass2b2 applies a 2-by-2 low-pass filter to an image.

median3 applies a 3-by-3 median filter to a WHIPS image.

mode3 applies a 3-by-3 mode filter to a WHIPS image.

mode5 applies a 5-by-5 mode filter to a WHIPS image.

projss place projected sidescan sonar data in an image file which
represents a specific map area.

qmos Mosaics (overlays) the specified input file over the specified
output file. The program will either overlay where the input
file has priority over the existing output file, where the output
file has priority over the input file, or average non-zero pixel
values together from the input and existing output file.

quickview displays an 8-bit WHIPS netCDF image in an X-11 window.

raw2whips convert a raw image data to a netCDF file for use with
WHIPS

3

ssdk2dk create a new WHIPS netCDF sidescan sonar image file by
extracting a sub-area and the accompanying header
information from an existing WHIPS netCDF sidescan sonar
image.

sshead computes a simple heading for a WHIPS netCDF sidescan
sonar image.

sumss summarize the information contained in a sidescan sonar
header for mapping.

whips2raw convert a WHIPS netCDF image file to a raw image file

As stated earlier, the user should be familiar with the general pre-processing requirements for
sidescan sonar data, which for this system is summarized by Paskevich (1992). However, it is
additionally important to stress the necessity of having as accurate a fish position and heading
values contained in the sidescan sonar header as the user can supply. Pre-processing of the
sidescan sonar data may take place without this information contained as part of the header
information, but the fish heading and positions are critical to the placement of the sidescan sonar
pixels in the mapping procedure. It is the user's responsibility to ensure that the information
contained in the header is as accurate as can be obtained. How the user prepares the information
and combines it with the sidescan sonar data is not within the scope of this report. As newer
sidescan sonar systems record the fish position and heading values, this automated recording may
alleviate the user from navigation requirements. However, older systems rely on the ship
position and heading rather than having an accurate fish position and heading.

Mapping Procedure

There are three essential steps in mapping a swath of sidescan sonar data. The first step is to
compute the geographic coordinates of each pixel within the sonar image. This step is
accomplished by selecting one of three programs: gss, gssv or gss_vel. These three programs are
essentially the same with the difference being in the input file that they accept and process. The
second step is to convert those geographic coordinates to meter coordinates for a specific map
area, scale, projection and spheroid. The final step is to properly place the projected coordinates
in a WHIPS netCDF image file that represents the map area. These three steps are accomplished
by executing one of the gss programs, proj and projss. These programs and processing
procedures are preliminary and are subject to change.

The three steps may be executed separately with each step creating the appropriate output file.
However, the programs may be scripted together by utilizing UNIX std_in and std_out files. In
this manner, there would be less disk space utilized since the data would pass transparently from
program to program. The programs, as they may be scripted together, are shown below. The
actual program parameters required would differ according to the data and map scale selected.

% gss_vel -i gloria.img -r 50 | proj_info | projss -o gloria.map

The file proj_info contains script information that would define the cartographic information
required by program proj along with the map boundaries required by program projss. Though
the information contained in proj_info could be entered as part of the run-line above, it is better
to input the information into a file to eliminate the possibility of typographic errors when the
information is required for subsequent executions. In addition to the cartographic information
contained in file proj_info, the file also references an additional file that contains the geographic

4

coordinates for the corners of the requested map area. A more detailed discussion of the
programs and their parameters are discussed in Mapping Example.

Geographic placement of the sidescan sonar image pixels.

The first step in mapping the sidescan sonar imagery is to compute the geographic coordinates
associated with each pixel contained in the sonar image. This step is accomplished by one of
three programs: gss, gssv or gss_vel. The major difference between the programs is the input
file that they accommodate. Though each program requires the input file to be in a WHIPS
netCDF sidescan sonar image format, the actual pre-processing that was applied to the sidescan
sonar image swath up to this point would be different. A brief description of the file differences
follows.

Each of the programs mentioned above will compute the geographic coordinates for the pixels
from within the selected part of the sidescan sonar image and each program computes the pixel
coordinates in the same manner. The pixel coordinates are computed by utilizing the heading
and nadir latitude and longitude coordinates contained in the WHIPS sidescan sonar header.
With the user supplied image pixel resolution, the program computes the pixel coordinates from
nadir to the far range of the image. The coordinates are computed first for the port and then
starboard side of the individual scans.

The WHIPS netCDF sidescan sonar image must contain a valid fish heading value in the sidescan
sonar header. If the data set does not contain fish heading values, a heading can be computed
from the fish positions contained in the header with program sshead. Program sshead computes
the heading between consecutive lines and places the computed value in the sidescan sonar
header of the output image file.

Program gss will process a sidescan sonar image that has not been through the pre-processing
program velocity. A geographic position for each pixel contained in each sonar swath is
computed and output to the UNIX std_out device. The program applies no correction for along-
track resolution. Gss processes each and every user-specified line and sample from the input file.
If the input file has been processed by program velocity, and multiple lines with the same nadir
coordinate exist in the input file, the multiple lines will be processed over one another. This is
obviously redundant processing to the program and time consuming. When attempting to create
a map at a scale equal to or less than the input data, gaps will result between consecutive lines
because of the greater resolution in the across- versus along-track direction of some data.
Program gss is best suited for sidescan sonar imagery data in which the along- and across-track
distances represented by a pixel are approximately equal. Program gssv should be used if the
sonar image has been pre-processed through velocity.

During pre-processing of some sidescan sonar data, the data requires a velocity correction be
applied to it to produce an image with equal across- and along-track resolution. Generally, this
correction has been accomplished by computing the distance between a given segment of lines.
With the distance traveled from the beginning of the segment to the end known, a line duplication
factor is computed. This line duplication factor represents how many times each individual line
should be duplicated to produce an output image with equal across- and along-track resolution.
The segments of line are then processed by duplicating the individual lines in the current segment
to produce an image with equal across- and along-track resolution. In duplicating the image
lines, the associated sidescan sonar header is also duplicated, resulting in an image, which upon
closer examination has multiple lines with the same nadir coordinate. Program gssv will handle a
sidescan sonar image that has been velocity corrected in this manner. This program differs
slightly from program gss in that it will not place the lines with the same nadir position over each
other. When consecutive lines with the same nadir coordinates are encountered, gssv will
compute a placement of the line adjacent to the previous line one using the heading value from

5

the sidescan sonar header and the user supplied image pixel resolution. With the offset computed
for the duplicate line and applied to the nadir position, the result is to have the duplicate lines
placed side-by-side. This helps reduce the gaps which otherwise would appear between
individual scan lines. This approach however can result in a blocky image being produced by
excessive replication of the sonar swaths when attempting to produce an image with equal
across- and along-track resolution.

Program gss_vel combines the functions of pre-processing a sonar image with velocity and the
pixel computations of program gss. As gss_vel is processing the sidescan sonar input image, the
distance traveled between consecutive lines is computed. Using the image-input resolution
supplied by the user and the computed distance between the consecutive lines, a line duplication
factor is then computed. This is somewhat different than applying a velocity correction to the
image as part of the pre-processing because the duplication factor is computed and applied to
consecutive lines rather than a general duplication factor for a segment of lines as is done in the
pre-processing. As with program gssv, program gss_vel will compute the offset for the required
duplicate lines and place the consecutive lines along-side each other. This, as with utilizing a
velocity corrected image and program gssv, will help reduce the gaps that can occur between
adjacent lines.

Whether selecting a velocity corrected image or non-velocity corrected image, these programs
may be used to process sonar data with a sinuous track, as it will properly place the lines in the
map space. The user selecting a map resolution that best accommodates the input data resolution
can minimize the gaps that may occur. However, gaps and holes that may result, particularly
around sharp turns, can be filled as part of the final mapping steps.

Good heading and fish positions are critical to placing the sonar swaths. If the heading or fish
positions are not smooth, the placement of the lines will appear to be somewhat scattered and will
overwrite data. It may be necessary, as part of the data preparation prior to beginning the
mapping procedure, to smooth the fish position or heading values so the placement of adjacent
lines will fall parallel to each other. Applying either avg_heading or avg_position or both to the
WHIPS netCDF sidescan sonar image can do this. These programs each apply a user specified
running average over the appropriate sonar header values to smooth the values for mapping. An
example of utilizing avg_heading may be found under Mapping Example.

 These programs will, by default, compute the geographic coordinates for each of the sidescan
sonar pixels contained in a WHIPS netCDF sidescan sonar image file. The user may optionally
specify a sub-area of the image to be processed. Processing always takes place from nadir out to
the far range. Only positions with valid pixels (non-zero values) are output.

Program proj

This program is critical to the user's creation of the final map area and represents the second step
in completing the mapping procedure. As used in this processing scenario, proj accepts as input
the computed geographic coordinates of the pixels from program gss, gssv or gss_vel and
converts the longitude and latitude coordinates into Cartesian coordinates.

Program proj operates as a standard UNIX filter utility. Input data may be piped directly into
proj. Output of the program is to std_out and would generally be piped directly to the third and
final program in the mapping procedure.

Proj utilizes many optional parameters such as mapping spheroid selections. However, some
parameters, which are defined as optional in the proj documentation, must be specified to

6

accommodate the format of the input data and properly format the output data. The optional
parameters, which must be specified, are:

-f `%.0f' Specifies the format string for writing the output values. This
format will round-up the Cartesian values and output them as
integer values.

-r This option reverses the order of the input values from the
expected longitude-latitude values to latitude-longitude.

-s This option reverses the order of the output values from
longitude-latitude to latitude-longitude.

Program proj supports approximately 70+ cartographic projections. The user must properly
specify any of the projection specific parameters that may be required by the selected projection.
It is essential that the user have a good understanding of the available map projections and the
required projection parameters to create the desired map. For more detailed cartographic
characteristics of the projections, the user may refer to additional documentation (Snyder, 1988
or Snyder and Voxland, 1989).

In addition to the required proj parameters and input data to be projected, the user must supply
the bounds of the selected map area. The map bounds must precede any pixel data to be
projected. The map corner coordinates must be specified in the DMS system utilized by proj and
must be specified in the following order:

upper left

upper right

lower right

lower left

Specifying the map boundaries is best accomplished by entering the coordinates in a separate file.
The file may then be specified on the proj run-line before the specification of the input data.
This will be discussed further under Mapping Example.

Program projss

Program projss accepts the output from program proj and places the pixels in their proper image
location. The program begins by reading the first four pairs of coordinates passed to it from
program proj . Projss assumes that these values are the map boundaries in Cartesian coordinates.
With the four map corners known, the program computes the size of the image area. Since the
image must be defined as a rectangle, the maximum coordinates are used to compute the image
size. For some map projections (i.e. conic projections), the desired map area will be smaller than
the actual image size because of the arc of the longitude lines. Figure 1 shows the typical
placement of a Universal Transverse Mercator (UTM) map in a defined image area and the map
corners are designated as points A, B, C and D.

7

After the image size has been defined and created, the program continues by placing the sidescan
sonar pixels in their proper map space. Pixel Cartesian coordinates that are outside of the defined
map area and yet fall within the defined image area are placed in the output image. The image is
filled on a pixel-by-pixel basis as the pixels are individually placed. There are three drawbacks
to the pixel-by-pixel method, and they are discussed below. Note of the drawbacks are made to
warn the user of possible problems which could affect the quality of their final maps when using
the gss_vel | proj | projss processing scenario, and to discuss possible future processing
alternatives.

The first drawback is due to the random order of the input pixels being placed. This random
input results in a last-in placement for coordinates that may have two or more valid pixels. Since
the program can not place in order the multiple values for a given coordinate, the program must
deal with each pixel as a unique value and is placed in it's coordinate location regardless of any
pixel values which may have been previously placed at that point. Even a simple comparison for
placement of pixels in non-zero locations and averaging of the pixels would be restrictive due to
the overhead placed in computing.

Secondly, it would be more desirable to order the pixels based on their sorted placement in the
image area. If the input pixels could be placed in sorted order from the image origin down to the
last line and last sample to be placed, processing could be accomplished by "building" a complete
image line. This would result in fewer writes to the output file since a complete line of image
data could be written rather than the many single writes which must be done for each pixel input.
Fewer writes would speed up processing. However, when processing over a half million pixels at
a time (a modest file at best), speed may be best accomplished by increased workstation
performance. The sorted order of the data would also be beneficial by allowing the program to
compare multiple pixel values for a specific coordinate and select the final output pixel value by
averaging or selecting either the minimum or maximum value.

The third drawback is the "holes" which develop between lines of data as the pixels are placed in
the map space. The "holes" may be best eliminated, or reduced in number, by the user carefully
selecting the resolution of the sonar data being processed with the goal in mind of the final
resolution of the map to be created. If the user selects to pre-process the sonar swaths at a half
meter resolution and the final map resolution is 1 meter, fewer "holes" will develop during the

1XPEHU�RI�VDPSOHV

,PDJH�RULJLQ

�����

1XPEHU�RI�OLQHV

)LJXUH�����870�PDS�SODFHG�LQ�LPDJH�VSDFH�

8

mapping stage than if the output image is at a .5 meter pixel size. An obvious drawback is the
volume of pixels that will have to be processed resulting in longer execution time. The user must
consider the trade-off of processing such enormous volumes of data or what "holes" may be
created in the mapping process. These "holes" should be filled in some manner to produce a
complete map image. The preferred method would be some form of interpolation based on the
orientation of the scan line and the appropriate neighboring pixels. To accomplish such a task,
the sonar data must be processed on a swath-by-swath basis with two consecutive swath's being
processed at a time. Unfortunately, the ability to handle the data on a pixel-by-pixel basis is the
only option currently available. This results in the "holes" or gaps that may by created to be
filled in some manner after the sonar map has been created. Current options include a low-pass
filter replacing zero values, a 3-by-3 or 5-by-5 mode or median filter, or some combination of
those filters. The "filtering" options are less than perfect since the zero pixels which may be
valid image data are replaced and the zero pixels are filled relative to the orientation of the
boxcar passing over the image, not the orientation of the scan lines. The boxcar orientation is
perhaps better suited for a series of east-west or north-south track lines. However, with careful
selection and application of the filters, the sidescan sonar map mosaics with any scan line
orientation can be processed and the image "holes" filled without degrading the image
significantly.

Mapping Example

The example which follows shows the steps required to map a 6-hour GLORIA (Geological
Long-Range Inclined Asdic) sidescan sonar image into a specific map area. The 6-hour pass
used in the example, and referred to as Pass-13, was initially pre-processed at 45 meters in the
across-track resolution and has an average resolution of 160 meters in the along-track direction.
The data were collected as the ship passed in a easterly direction with a course heading of 90o.
The selected input image, shown in its non-velocity corrected form as Figure 2, contains 720

9

lines and 1024 samples with approximately only lines 1 through 320 falling within the desired
map area. Additionally, approximately 16 pixels at the far range of the image contain the hour
marks for the sonar data. These hour marks are not to be included in the final map, so the -s
option with a value of 490 will be specified when executing one of the geographic computation
programs (i.e. gss, gssv or gss_vel). Since the image contains 1024 samples (512 samples per
side), specifying the -s option with 490 samples halts the processing of the individual scans
before reaching the hour marks.

To produce an image with equal along and across-track resolution, the image would require a 3.5
aspect ratio correction be applied by program velocity. The velocity-corrected image is shown as
Figure 3. In many cases, the computed aspect ratio cannot be applied directly because of the
fraction computed. In the example of Pass-13, the aspect ratio is 3.5 and an individual image line
cannot be duplicated by a half. To accommodate the round-off problem, the velocity program
applies a duplication factor that alternates between 3 and 4 by first duplicating a line 3 times, the
next line 4 times, the next line 3 times and so forth. Alternating the round off for the duplication
factor produces an output segment that will equal the appropriate number of lines for the distance
traveled in the given segment. Duplicating the sonar scans produces a blocky image, which, in
this example, is most noticeable at the far range of the image. Generally a small low-pass filter
(2 lines by 2 samples) is applied to the image during the pre-processing to reduce the affect. For
purposes of comparison, no smoothing filter has been applied at this time.

The sonar image is mapped at a Universal Transverse Mercator (UTM) projection at a 100-meter
scale. The bounds of the map area are 34.25o to 35o south latitude and 112.75o to 112o west
longitude with the central longitude specified as 111o west. The mapping parameters for proj are
defined as:

+proj=utm +lon_0=-111 -m 1:100

The map bounds may be specified on the proj run-line, but it is recommended that they be
entered into a file to be passed to proj to reduce the possibility of errors and to allow the
information to be accessed during additional executions of the mapping procedure. The map
corner coordinate pairs must be entered in the order of upper left, upper right, lower right and
lower left. The coordinate pairs must be separated by one or more spaces or tabs, and may be
entered in the DMS format supported by proj . The file bounds.dat contains the following
information:

 -34.25 -112.75
-34.25 -112

 -35 -112
 -35 -112.75

The file bounds.dat, which contains the map boundaries, is entered on the run-line before the
sidescan sonar data file, side-scan.dat. With the files entered in this manner, the bounds.dat file
is processed first and the file side-scan.dat processed next. Additional proj parameters are
required to properly read the input data and format the output data for input to program projss.
These parameters include -r, -s, and -f `%.0f' to read and produce the formatted data properly.
An example of a complete proj run-line to produce the desired results follows:

% proj +proj=utm +lon_0=-111 -r -s -m 1:100 -f `%.0f' \
bounds.dat sidescan.dat

10

11

The previous run-line would process the specified data files and output the projected information
to the UNIX std_out device. A more practical use of the run-line would be to have the sidescan
sonar pixel coordinate data passed to proj via std_in. By specifying the sidescan sonar pixels as
std_in, the above run-line would translate to:

% proj +proj=utm +lon_0=-111 -r -s -m 1:100 -f `%.0f' bounds.dat -

Since the above run-line expects the sidescan sonar pixel data to be passed to it via std_in, the
proj execution must be preceded by selecting one of the geographic coordinate computational
programs. The user should select the appropriate program gss, gssv or gss_vel depending on the
pre-processing applied to the sidescan sonar data and the desired mapping results. Those
programs will process the WHIPS netCDF sidescan sonar image and output the computed
geographic coordinates of the pixels to the std_out device to allow piping of the programs.

The data from proj is output to the UNIX std_out device and may be re-directed to a user-
specified file to be saved for further processing. It is recommended, however, that the user
continue the processing stream by piping the output data directly into the third program in the
processing scenario, projss. By connecting the three programs, the intermediate files that would
be created are transparent to the user and only the final map image is stored on disk.

The proj run-line should be entered into a file that can be referenced during the processing
procedure. This reduces the possibility of errors that can be introduced by the user re-typing the
input for repetitive operations. Assuming the user has entered the proj information into file utm-
proj (the run line listed above), a complete processing scenario can be summarized as:

% gss_vel -i pass13.img -r 45 -s 490 -l 1,320 | \
utm-proj | projss -o pass13.map

It appears that the best results for these data are accomplished by utilizing program gss_vel.
There are some trade-offs the user should be aware of when selecting to map either a velocity or
non-velocity corrected sidescan sonar image. Mapping a non-velocity corrected image with
program gss_vel increases the total time required to complete the mapping part of the procedure.
However, applying the velocity correction to the sidescan sonar image during the pre-processing
procedures will increase the time to complete the pre-processing phase while increasing the size
of the final file by 2 to 3 or 4 times it's original size. This increases the amount of disk space
required to complete the pre-processing and store the final image while decreasing the amount of
disk space available for the mapping procedure.

In the past, the velocity correction was applied to the sonar swaths by program velocity. By
utilizing program gss_vel, the sonar image can be velocity corrected and mapped at the same
time.

To begin, the sonar image (Figure 2) was processed using program gss and mapped. From the
resultant image, (Figure 4), one can see that the gaps which are produced between consecutive
lines are rather large since the map resolution exceeds the actual resolution of the input image.
To reduce the gaps between the adjacent sonar scans, the sidescan sonar data must be velocity
corrected or the map should be re-scaled to meet the along-track resolution (160 meters).
Though re-scaling the map to a 160-meter resolution would result in smaller gaps in the along-
track direction, the data in the across-track resolution would be reduced and the final affect
would be an image with reduced detail as compared to the original image swath.

12

)LJXUH�����3DVV����QRQ�YHORFLW\�FRUUHFWHG�DQG�PDSSHG�

13

)LJXUH�����3DVV����YHORFLW\�FRUUHFWHG�DQG�PDSSHG�

)LJXUH�����3DVV����YHORFLW\�FRUUHFWHG�DQG�PDSSHG
VLPXOWDQHRXVO\�

14

For comparison, the velocity-corrected image (Figure 3) was processed with program gssv and
mapped with the same parameters. Figure 5 shows the results of mapping the velocity corrected
image. It is obvious that utilizing the velocity-corrected image reduces the gaps between
consecutive lines and produces a more desirable image.

Since the user may not always want to pre-process the sidescan sonar data through the velocity
program, gss_vel combines the functions of programs velocity and gss. The non-velocity-
corrected image (Figure 2) was processed using program gss_vel and was mapped again with the
same parameters. The mapped results are shown in Figure 6.

The images processed by gssv and gss_vel were compared with Figure 5 being subtracted from
Figure 6. The resulting difference is shown as Figure 7 and can be attributed to the round-off
factor applied during the velocity correction. Generally these two files are the same. These
additional lines help reduce the affect of the gaps which can result in the heading fluctuation
between lines. The user may select a round-up option when running program gss_vel by
specifying -R on the program run-line. When -R is specified, the program will round up the

number of lines to be output
rather than truncate the
number. In other words, if the
-R option is specified and the
duplication factor computes
as 3.5, the line will be
duplicated 4 times rather than
just 3 times.

The fish heading and sonar
position values are critical to
placing the sonar imagery in
its proper Cartesian space. In
the past, when digital
mapping of the sidescan sonar
was done utilizing straight-
line segments an overall
heading was applied to the
entire line. This user-
specified heading was then
applied to all the scans
contained in the line segment.
With the same heading value
used for each line, the
adjacent lines would fall
neatly alongside each other.
To allow for a smoother
heading value for the sidescan
sonar file being processed, the
user may want to consider
smoothing the heading values
to allow placement of the

consecutive lines falling neatly alongside each other. The following examples (Figures 8, 9, 10
and 11) show the affect of mapping the same image as shown in Figure 2 after the heading values
have been smoothed by program avg_heading. The pixel coordinates of the sidescan sonar data
have been computed using program gss_vel so as to apply the velocity correction during the
mapping. The Figures show the affect of having a 3, 5, 7 or 9-line average applied to the heading
values before the mapping is done. The user should experiment with applying the smoothing
filters to determine an acceptable averaging size.

)LJXUH�����'LIIHUHQFH�EHWZHHQ�)LJXUH���DQG�)LJXUH���

15

)LJXUH�����6RQDU�VZDWK�PDSSHG�ZLWK�
KHDGLQJ�DYHUDJHG�E\���OLQHV�

)LJXUH�����6RQDU�VZDWK�PDSSHG�ZLWK�
KHDGLQJ�DYHUDJHG�E\���OLQHV�

)LJXUH������6RQDU�VZDWK�PDSSHG�ZLWK�
KHDGLQJ�DYHUDJHG�E\���OLQHV�

)LJXUH������6RQDU�VZDWK�PDSSHG�ZLWK�
KHDGLQJ�DYHUDJHG�E\���OLQHV�

16

To continue the example, the preferred map selected is shown as Figure 11. This image provides
relatively good placement of the scan lines without excessively smoothing the heading values.
The steps and necessary files to process the swath to this point are summarized in Appendix B.
To complete the map area, Pass-12 was processed to complete the easterly sonar swath through
the map area. Pass-12 was processed utilizing the same programs and processing steps as applied
to Pass-13. The two individual images were combined using program qmos and are displayed as
Figure 12.

Map Completion

Depending on the resolution of the sidescan sonar image and the map scale selected, the user may
need to fill in "holes" and "gaps" which may occur between pixels. The two combined images
shown in Figure 12 illustrate this problem. The "holes" and "gaps" are generated as the
individual pixel coordinates are placed within the map space. If the final map scale is equal to or
smaller than the sonar resolution, "holes" will exist, as individual pixels may not fill a map area.
Even when a map scale is greater than the sonar resolution, "holes" may exist, as the swaths may
not produce even coverage. These "holes" may be filled in by one or more additional methods.

To complete the map area for this example, a series of mode filters were applied to the image
next. A 3-by-3-mode filter and a 5-by-5-mode filter were applied to the image. Once the filters
were completed, they were re-applied to the image to fill any remaining "holes". The mode is
defined as the value that occurs most often within the boxcar neighborhood. These filters helped

)LJXUH������3DVV����DQG����SURFHVVHG�DQG�FRPELQHG�

17

fill the gaps by replacing zero pixel values with the computed mode value for the specific
neighborhood. However, continued application of these filters will not complete the image to our
satisfaction since at times it is not possible to determine a mode value. For instance, in a 3-by-3
neighborhood 9 different values may occur or two unique values may occur 4 times. In this case
no mode value can be determined and the zero pixel remains.

Finally, to complete the image a small (3-by-3) low-pass filter-replacing zero values was applied
to the image. This filter simply replaces zero pixels with the average value computed from the
neighborhood. This will fill the remaining zero pixels within the boxcar neighborhood and
produce the final image shown in Figure 13.

To complete the map area, an image containing the west mapped sidescan sonar swaths was
completed. The steps utilized in completing this portion of the map are summarized in Appendix
C. The completed west portion of the map area is displayed as Figure14.

Stenciling

The east and west components must be combined to produce a final image with complete
coverage of the map area. Before combining the images, both components required stenciling to
remove unwanted areas from the images before combining them. Stenciling provides the user
with the ability to select certain look angles of the data as well as the ability to cut unwanted data
from the images.

Software and utilities to complete the stenciling procedure have not been implemented as part of
the WHIPS software as of yet. To accomplish the stenciling procedure, several MIPS programs
were utilized. To prepare for the stenciling procedure, the images were first transferred, via ftp,

)LJXUH������(DVW�FRPSRQHQW�ILOWHUHG�DQG�
FRPSOHWHG�

)LJXUH������:HVW�FRPSRQHQW�ILOWHUHG�DQG�
FRPSOHWHG�

18

from the UNIX computer system to the Branch's MicroVAX-II computer system where the
MIPS software resides. To prepare the images for transfer, the WHIPS netCDF images were
translated to raw binary stream images by program whips2raw.

Once the individual images were stored on the MicroVAX system, they were re-assembled using
the MIPS program IMPORT . The MIPS images were then displayed and stenciled to eliminate
the unwanted portion of the images using available MIPS programs, which included TVIN ,
TVSTCL , VEC2RAS and MASKIM . The stenciled east and west components were then
transferred back to the UNIX system. The stenciled images were prepared for transfer over the
network by EXPORT. Once the images were stored on the UNIX system, they were converted
back to the WHIPS netCDF format by program raw2whips and assembled together using
program qmos. The stenciled, combined images are shown as Figure 15.

The data used in this example are a subset of a 2o-quadrangle map with an area bounded by 34o to
36o south latitude and 116o to 114o west longitude. To complete the map area, all or part of
twelve 6-hour GLORIA sidescan sonar passes were processed using the described techniques and

)LJXUH������(DVW�DQG�ZHVW�FRPSRQHQWV�VWHQFLOHG�DQG�FRPELQHG�

19

the WHIPS processing is summarized in Appendix D. The 2o quadrangle was completed at a one
hundred-meter resolution. Computer processing time to complete this map took approximately 8
1/2 hours. Other than creating the necessary script files to complete the processing, no additional
bookkeeping, math or interactive computer work was required by the user.

The pixel geographic computations were accomplished using program gss_vel. The individual
passes were processed to produce three map components: east, west and south. Once the three
map components were completed, they were transferred to the MicroVAX-II computer system
for stenciling. The stenciled images were then transferred back to the UNIX computer system,
assembled and smoothed with a 2-by-2 low pass filter (lowpass2b2) to produce the final map
shown in Figure 16.

Summary

As stated earlier, the programs and techniques used in this digital mapping procedure are
experimental and subject to change. However, the advantage of automated sonar mapping in
eliminating the user-intensive labor required by previous digital mapping techniques is obvious.
In addition, this new method provides an easy way to map sinewy tracklines that was not
previously available.

A critical component of this digital mapping procedure is the ability to produce accurate fish
navigation. As navigation of the sonar fish is improved, accuracy of mapping the sonar data will
improve. Accurate navigation is required to properly place the sidescan sonar swaths and to have
the underwater features properly line-up from swath to swath without the additional work
required to warp and fit the images to one another.

In the future, it is hoped that more accurate mapping of the sonar data can be accomplished by
mapping consecutive swaths simultaneously. Mapping of consecutive swaths together should
provide the ability to interpolate and fill the "holes" using the data oriented to the scan and not
the orientation of a square boxcar to the image. It is also hoped that future developments will
include the ability to stencil the images on a UNIX based computer system with X-11 support.

Aknowledgements

I wish to thank Roger Larson and Robert Bird from the Graduate School of Oceanography,
University of Rhode Island, and Roger Searle from the Department of Geological Sciences,
University of Durham, United Kingdom, for the GLORIA sidescan sonar data used in developing
and testing the mapping procedures described here.

20

21

)LJXUH������&RPSOHWHG�WZR�GHJUHH�*/25,$�TXDGUDQJOH�

22

Appendix A - 23

APPENDIX A

Woods Hole Image Processing System (WHIPS)
Program Documentation

Appendix A - 24

Appendix A - 25

WHIPS Programs

avg_heading apply a running average to the heading values contained in a WHIPS netCDF side-
scan sonar image header

avg_position apply a running average to the fish positions contained in a WHIPS netCDF side-
scan sonar image header

dk2dk create a new image file by extracting a sub-area from an existing image
filter applies a low-pass, high-pass, zero replacement or divide filter to an image
gss computes geographic coordinates of side-scan sonar pixels
gss_vel computes geographic coordinates of side-scan sonar pixels and applies the necessary

velocity correction to the sonar swath
gssv computes geographic coordinates of side-scan sonar pixels from a velocity corrected

image
listhdr list the contents of a side-scan sonar header in a WHIPS image
lowpass2b2 applies a 2-by-2 low-pass filter to an image
median3 applies a 3-by-3 median filter to an image
mode3 applies a 3-by-3 mode filter to an image.
mode5 applies a 5-by-5 mode filter to an image.
projss place projected side-scan sonar data in a map space
qmos Mosaics (overlays) the specified input file over the specified output file. The

program will either overlay where the input file has priority over the existing output
file, where the output file has priority over the input file, or average non-zero pixel
values together from the input and existing output file.

quickview displays an 8-bit WHIPS netCDF image in an X-11 window
raw2whips convert a raw image data to a netCDF file for use with WHIPS
ssdk2dk create a new image file by extracting a sub-area and accompanying header

information from an existing WHIPS netCDF side-scan sonar image
sshead computes a simple heading for a WHIPS netCDF side-scan sonar image
sumss summarize the information contained in a side-scan sonar header for mapping
whips2raw convert a WHIPS netCDF image file to a raw image file

Appendix A - 26

avg_heading (1) WHIPS v1.5 (6/1996) avg_heading (1)

Appendix A - 27

NAME

avg_heading - apply a simple running average to the heading values contained in a WHIPS
netCDF sidescan sonar image header

SYNOPSIS

avg_heading -i input -o output [-l nl] [-H]

DESCRIPTION

The avg_heading program allows the user to apply a simple running average over the heading
values contained in a WHIPS netCDF sidescan sonar image header and to effectively smooth the
values. The number of values averaged may be specified by the user by selecting the -l option
along with the number of lines (nl) to average on the run-line. The specified number of lines must
be 3 or greater and must be an odd integer value. If this option is not specified, the program
defaults to averaging the heading values from 3 lines. Special processing takes place to handle the
beginning and end of the sidescan sonar files. However, general processing is done by
accumulating the heading values for an equal number of lines before and after the actual line being
processed, averaging the value, and outputting the new heading value in the output file.

Special processing takes place to handle the beginning and ending lines contained in the files. It is
not possible to have an equal number of lines before and after the line being processed unless
processing is taking place in the center of the image, away from the beginning and ending lines.
To compute the total to be averaged at the beginning of the file, the first line is weighted by an
additional 1/2 the number of lines to be totaled. This means when nl = 3 and the first line is to be
processed, the first heading value is computed as:

new_heading1 = (head1 + head1 + head2) / 3

In this simple case, processing the second line will produce an equally spaced number of heading
values before and after the record being processed. Even spacing of the lines will continue until
the last line is to be processed. To process the last line, as with the first line, the heading from the
last line is double weighted.

As the number of lines to be processed is increased by the user, the weighting of the first line is
increased. For example, when the user specifies nl=5 the new heading for the first record is
computed as:

new_heading1 = (head1 + head1 + head1 + head2 + head3) / 5

In the example above using 5 lines and processing moves from the first to the second record, the
first line is not weighted as heavily.

new_heading2 = (head1 + head1 + head2 + head3 + head4) / 5

As described earlier, moving away from the beginning of the file will eventually produce line
processing where the heading values are weighted evenly before and after the specific line to be
processed. The even processing will continue until processing nears the end-of-file. At that time,
any necessary weighting of the last line in the image is similar to that done for the first line in the
file.

Special processing was added to correct a problem that occurred when averaging north-heading
values. During times when the heading value would alter between high values (approximately
325o - 360o) to low values (approximately 0o - 35o) averaging the low and high values produced

avg_heading (1) WHIPS v1.5 (6/1996) avg_heading (1)

Appendix A - 28

accurate results though wild heading values. These shifts in the heading value typically occur in
one of two scenarios: 1- a ship is attempting to follow a northerly course and it's heading waivers;
or 2- the ship is executing a turn. Regardless of the cause, averaging the high and low values
together produces undesirable results. In simplest terms, if the program were attempting to
compute an average heading from two values of 359o and 1o, the mathematically correct result
would be 180o though not the desired heading value of 0o. To correct for this problem and to
compute an accurate heading value, additional checks were added to the program to test when the
heading values were approaching 0o from either direction. When the program has detected
heading values both in the high and low range, it focuses on those headings that will be used to
compute the average heading for a given line. As the total is computed, 360o is added to the low
values to bring the headings into a similar data range. The average heading is then computed from
these values. If the average heading is greater than 360o, 360o is subtracted from the average and
becomes the new heading value for the line being processed. As the processing continues to the
next line, the program checks to see if both high and low heading values continue to exist. If so,
the special computation applies once again. When the heading values being totaled fall entirely
within a high or low range, the default method of computing the new heading value by a running
average is resumed.

The special handling required to properly compute the heading values when mixing the high and
low heading values will slow file processing in those files were the heading values shift frequently
in the north direction. The heading computation and program execution is more efficient when
processing can be accomplished without having to address the special handling for the north
heading values or for a few cases such as a valid course turn in a file.

The following run-line options must be specified and can appear in any order.

-i input

Specifies the input file to be processed. The input file must 8-bit.

The input file must contain the sidescan sonar header information. If the user selects a
file that does not contain the proper information, the program will display the message
ncvarid: variable "date" not found and the processing will stop

-o output

Specifies the output file to be created.

Options: The following run-line commands are optional to the execution of the program.

-l nl

Specifies the number of lines (nl) for which the heading value is to be totaled and
averaged.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

The input file selected must contain the required sidescan sonar header information.

The output file to be created must not currently exist.

EXAMPLE

avg_heading (1) WHIPS v1.5 (6/1996) avg_heading (1)

Appendix A - 29

The example below shows a simple execution of the program.

% avg_heading -i pass29.hdr -o pass29.avg_hd

The example below shows a possible execution of the program to compute the running average
using seven heading values.

% avg_heading -i pass29.hdr -o pass29.avg_hd -l 7

SEE ALSO

avg_position(1)

WHIPS(5), whips_sonar(5)

"Digital Mapping of Sidescan Sonar Data with the Woods Hole Image Processing system
Software": U.S. Geological Survey Open-File Report 92-536, 90p.

"MAPIT: An improved method for mapping digital sidescan sonar data using the Woods Hole
Image Processing System (WHIPS) Software": U.S. Geological Survey Open-File Report 96-281,
73p.

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

ncvarid: variable "date" not found - the selected input file does not contain the proper
sidescan sonar header information

BUGS

None known.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

Appendix A - 30

avg_position (1) WHIPS v1.5 (6/1996) avg_position (1)

Appendix A - 31

NAME

avg_position - apply a simple running average to the fish positions contained in a WHIPS
netCDF sidescan sonar image header

SYNOPSIS

avg_position -i input -o output [-l nl] [-H]

DESCRIPTION

The avg_position program allows the user to apply a simple running average over the fish
positions contained in a WHIPS netCDF sidescan sonar image header and to effectively smooth
the latitude and longitude positions. The number of positions to be totaled and averaged may be
specified by the user by selecting the -l option along with the number of lines (nl) to average on
the run-line. The specified number of lines must be 3 or greater and must be an odd integer value.
If this option is not specified, the program defaults to averaging the fish position for 3 lines.
Special processing takes place to handle the first and last records of the sidescan sonar image file
as well as the beginning and end of the sidescan sonar files. However, general processing is done
by accumulating the latitude and longitude coordinates for an equal number of lines before and
after the actual line being processed, averaging the position, and writing the new coordinates to the
output file.

The first and last records are handled uniquely. The fish positions for those records are output
unchanged. This was implemented to ensure that consecutive, separate file/line segments would
match. In addition to the special processing for the first and last records of the sonar file, special
processing takes place to handle the beginning and ending lines contained in the files. When nl (-
l) is specified as 5 or greater, it is not possible to have an equal number of lines before and after
the line being processed unless processing is taking place in the center of the image, away from
the beginning and ending lines. To compute the totals to be averaged at the beginning of the file,
the first line is weighted by an additional 1/2 the number of lines to be totaled. This means when
nl = 5 and the first line is to be processed, the second positions are computed as:

new_lat = (lat1 + lat1 + lat2 + lat3 + lat4) / 5

new_lon = (lon1 + lon1 + lon2 + lon3 + lon4) / 5

In this simple case, processing the third line will produce an equally spaced number of heading
values before and after the record being processed. Even spacing of the lines will continue until
the end-of-file is approached. As processing nears the end-of-file, the fish positions from the last
line are weighted accordingly.

The following run-line options must be specified and can appear in any order.

-i input

Specifies the input file to be processed. The input file must 8-bit.

The input file must contain the sidescan sonar header information. If the user selects a
file that does not contain the proper information, the program will display the message
ncvarid: variable "date" not found and the processing will stop.

-o output

avg_position (1) WHIPS v1.5 (6/1996) avg_position (1)

Appendix A - 32

Specifies the output file to be created.

Options: The following run-line commands are optional to the execution of the program.

-l nl

Specifies the number of lines (nl) for which the sidescan sonar fish positions are to be
totaled and averaged.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

The input file selected must contain the required sidescan sonar header information.

The output file to be created must not currently exist.

EXAMPLE

The example below shows a simple execution of the program.

% avg_position -i pass29.mg2 -o pass29.avg_pos

The example below shows a possible execution of the program to compute the running average
using seven values.

% avg_position -i pass29.mg2 -o pass29.avg_pos -l 7

SEE ALSO

avg_heading(1)

WHIPS(5), whips_sonar(5)

"Digital Mapping of Sidescan Sonar Data with the Woods Hole Image Processing system
Software": U.S. Geological Survey Open-File Report 92-536, 90p.

"MAPIT: An improved method for mapping digital sidescan sonar data using the Woods Hole
Image Processing System (WHIPS) Software": U.S. Geological Survey Open-File Report 96-281,
73p.

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

ncvarid: variable "date" not found - the selected input file does not contain the proper
sidescan sonar header information

BUGS

None known.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

dk2dk (1) WHIPS v1.0 (11/1991) dk2dk (1)

Appendix A - 33

NAME

dk2dk - create a new WHIPS netCDF image file by extracting a sub-area from an existing image

SYNOPSIS

dk2dk -i input_file -o output_file -a sl,ss,nl,ns [-l linc] [-s sinc] [-H]

DESCRIPTION

The dk2dk (disk-to-disk) program will create a new image file by extracting a user-specified sub-
area from an existing WHIPS netCDF image file. The sub-area is selected by specifying the -a
option on the program run-line. The image sub-area is specified by the starting line (sl), starting
sample (ss), number of lines (nl) and number of samples (ns) to be extracted. Image area variables
are specified relative to the image origin (sl=1 and ss=1) and is the upper left corner of the matrix.

The following run-line options must be specified and can occur in any order.

-i input_file

Specifies the input file to be processed. The input file may be 8, 16 or 32-bit.

-o output_file

Specifies the input file to be created.

-a sl,ss,nl,ns

Specifies the sub-area of the input file to be extracted. The sub-area is specified by
entering the origin as the starting line (sl) and starting sample (ss) of the area to be
extracted and the number of lines (nl) and the number of samples (ns) to be extracted.

When specifying the sub-area, the user must specify the sl and ss values. The program
will compute default values for the nl and ns parameters as the remaining lines and
samples in the input image from the user specified starting position.

Options: The following run-line commands are optional to the execution of the program.

-l linc

Specifies the line increment (linc) at which to output the lines from the input image sub-
area. A value greater than one will reduce the input image sub-area. A value less than
one will duplicate the input image lines and expand the image area selected. For
example, a line_increment of 2 would result in every other line from the input sub-area
being output. A line_increment of .5 would result in every line from the input image sub-
area being duplicated for output. The default line increment value is 1.

-s sinc

Specifies the sample increment (sinc) at which to output the samples from the input
image sub- area. This option is similar to the line increment (-l) option. The default
sample increment value is 1.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

dk2dk (1) WHIPS v1.0 (11/1991) dk2dk (1)

Appendix A - 34

RESTRICTIONS

The output file to be created must not currently exist.

NOTES

This program should be used if the user wishes to extract and create a sub-area of the image
portion of a WHIPS netCDF image file or a WHIPS netCDF side-scan sonar image. If the user
wishes to extract a sub-area of the image portion of a WHIPS netCDF side-scan sonar image and
retain the accompanying sonar header information for the image lines, the user should use
program ssdk2dk.

If the user desires to extract only the image data from a WHIPS netCDF side-scan sonar image file
and eliminate the sonar header, they may use program dk2dk.

EXAMPLE

The first example would extract the GLORIA side-scan sonar imagery from a file removing the
header information.

% dk2dk -i gloria.slr -o gloria.sub -a 1,129

The second example would reduce the input file by transferring every other line and sample to the
output file.

% dk2dk -i mickey.pic -o mickey.sub -a 1,1 -l 2 -s 2

SEE ALSO

ssdk2dk(1)

WHIPS(5)

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

BUGS

The 16 and 32-bit options of the program have not been completely tested.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

filter (1) WHIPS v1.0 (11/1991) filter (1)

Appendix A - 35

NAME

filter - apply a low-pass, high-pass, zero replacement or divide filter to an image

SYNOPSIS

filter -i input -o output -b nl,ns [-l | -z | -L | -h | -d] [options ... [-H]]

DESCRIPTION

The filter program allows the user to select one of five filter operations and apply it to a WHIPS
image. The filters are applied to the image by a moving boxcar. The boxcar (-b) is a user
specified sampling size that is two odd integer values that are not necessarily equal. The values
represent the number of lines and samples (nl,ns) to be considered when accumulating the sums.
Pixel values at the center of the boxcar are modified and are affected by the surrounding valid
values. The boxcar totals are applied over the image starting at line_1/sample_1 to
line_n/column_n. The boxcar is shifted left to right over the image line.

Valid data are specified by the user selecting the run-line option -v. The data values entered by
the user will define the valid data range for processing. Values less than the minimum value or
greater than the maximum value are considered non-valid and are not included in the operation of
computing the boxcar totals. Specifying a valid data range may have other impacts on the selected
filter. See the specific filter operation described on the following pages.

Each pixel surrounding the center of the boxcar is compared to the low and high range before the
filtering operation is done. If the value of the original pixel falls outside of the valid range, it is
not included in the boxcar sum and count. Boxcar totals represent the total of the valid pixel
values and the number of valid points surrounding the center of the boxcar. The original
unchanged pixel values are used to calculate the boxcar totals.

A minimum number of valid data points (-m) are required to be contained within the boxcar totals
before the filtering process takes place. If there are fewer points in the boxcar than the user
specified minimum, the resulting dn value will be set to zero on output for all filters. The default
minimum value for this option is 1. The user may specify a value greater than or equal to 1 and
less than or equal to the total boxcar size (nl * ns).

The minimum valid data points that must be contained in the filter may also be specified by
selecting a fraction (-f) of the boxcar that must contain valid data points. If this option is selected,
the minimum valid points is computed as:

((nl * ns) * fraction) + .5

For example, a 5-by-5 filter with a .5 fraction specified would then have to contain a minimum of
13 valid data points in the boxcar totals for the filter to be applied. This would have the same
result as specifying -m 13, but is easier to specify for large filters. If a fraction greater than one is
specified, it is reset to one. If the computed value is less than one, it will be set to one as default.

A coefficient value (-c) to expand the results of the data may also be specified. This is a real
number that is used by all filters to expand the range of the results of the filter operations. The
default value is 1.

The following run-line options must be specified and can appear in any order. Optional
program keywords are listed and described following the detailed filter descriptions.

-i input_file

Specifies the input file to be processed. The input file may be an 8, 16 or 32-bit image.

filter (1) WHIPS v1.0 (11/1991) filter (1)

Appendix A - 36

-o output_file

Specifies the output file to be created.

-b nl,ns

Specifies the size of the boxcar by the number of lines (nl) and the number of samples
(ns).

 -l | -z | -L | -h | -d

Specifies the type of filter to perform. Valid filter selections are low-pass (-l), low-pass
filter with zero replacement (-z), low-pass filter changing only valid data (-L), high-pass
(-h) filter or divide (-d) filter.

The core to all the filtering operations is the computation of the low-pass filter (LPF). The LPF is
a smoothing spatial filter that is good at reducing noise and removing the high-frequency content
of an image. The LPF is computed by averaging the total valid pixel values in the pixel
neighborhood. The neighborhood is the boxcar size specified by the user.

One consideration when developing a filtering program is how to deal with the edges of the image.
As the boxcar begins and moves across the image, it is not properly centered and would not
contain the proper sums. One possibility is to ignore the edges, thereby reducing the image
content. The approach taken in this program is to compute the boxcar totals at the image edges by
a folding/unfolding method. In essence, the program duplicates the neighboring pixels inside the
edges, centered on the boxcar. As the boxcar moves away from the edge and across to the center
of the image, these duplicated values are removed and replaced by pixel values from the center of
the image. As the boxcar meets the right and bottom edge of the image, the pixel values inside the
edge are slowly duplicated back as if to fold the edge of the image back over itself. The variables
for the individual filter are defined as:

(i,j) - The image coordinate of the pixel being computed. For line 29 and
sample 12, the image coordinate would be (29,12).

 P(i,j) - The original pixel value of the input image at coordinate i,j.

 S(i,j) - The sum of the points over the boxcar centered at i,j.

 N(i,j) - The number of valid points within the boxcar surrounding the pixel
being processed.

The LPF computation is defined below and is followed by a description of the individual filters.

LPF(i,j) = S(i,j)/N(i,j)

The low-pass filter (LPF) is a smoothing spatial filter. Only input image pixels values that fall
within the user specified valid data range and processing boxcar size are totaled and averaged to
produce the LPF component. If the minimum valid points (-m or -f) for the boxcar is not satisfied,
the output pixel is set equal to zero. If the minimum valid points have been satisfied, the LPF is
applied regardless of the original pixel value. In other words, this option will modify all input
pixel values. The low-pass filter is computed using the following equation:

LPF(i,j) = S(i,j)/N(i,j)

 X(i,j) = COEF*LPF(i,j)

If the sum of the boxcar or the number of valid points contained in the boxcar is zero, the value
returned by the LPF computation will be zero.

filter (1) WHIPS v1.0 (11/1991) filter (1)

Appendix A - 37

The zero replacement filter (LPFZ) is a low-pass filter with one minor difference. The difference
is that during the filtering process only input pixel values equal to zero are modified. This allows
the user an option to fill in "holes" based on the value of surrounding pixels. If the user does not
specify a valid range for computing the boxcar totals, the minimum valid value is automatically
set to 1 to eliminate zeros from the boxcar totals. The minimum valid value MUST be greater
than zero.

The low-pass filter changing valid data only (LPFV) is also similar to the low-pass filter described
above in the initial boxcar computations. The major difference is this option will only modify
input pixel values that fall between the valid minimum and maximum values specified by the user.
If an input pixel value is less than the specified minimum value, the output pixel is set to 0 for all
filters. If the input pixel value is greater than the maximum value, the output pixel value is set to
the maximum allowed value for the bit type. For an 8-bit image this value is 255, 16-bit is 32767
and 32-bit is set equal to FLT_MAX as defined in the file /usr/include/limits.h.

The high-pass filter (HPF) enhances the high-frequency details of an image. Edge enhancement
of an image is also possible with the application of a high-pass filter. The HPF is computed using
the low-pass filter described above. The boxcar values are computed by totaling the input image
pixel values that fall within the valid data range. The high-pass filter (HPF) is computed as
follows:

HPF(i,j) = NORM*(1-ADDBACK) + P(i,j)*COEF*(1+ADDBACK) -
LPF(i,j)*COEF

Before computing the high-pass filter, the original pixel value is compared against the valid data
range. The high-pass filter is applied to the image coordinate only if the original pixel value falls
within the valid data range. If the original value is less than the specified minimum valid value,
the output pixel is set equal to zero. If the input pixel value is greater than the maximum value,
the output pixel value is set to the maximum allowed value for the bit type. For an 8-bit image
this value is 255, 16-bit is 32767 and 32-bit is set equal to FLT_MAX as defined in the file
/usr/include/limits.h.

The divide filter (DIV), when utilized by specifying a valid data range, will produce a binary
image (0 or 255 values) similar to a mask image. When the LPF component of the filter is greater
than the maximum valid value specified by the user, the input pixel will be output as 255. If the
LPF component is computed as less than the minimum valid value specified by the user, the
output pixel is zero. The resulting image would then be a "mask" of the valid values. The divide
filter is computed as follows:

DIV(i,j) = COEF*(P(i,j)/LPF(i,j)) - NORM

The divide filter is applied to the image coordinate only if the original input pixel value falls
within the valid data range. If the original value is less than the minimum value specified by the
user, the output pixel value is set equal to zero. If the input pixel value is greater than the
maximum value, the output pixel value is set to the maximum allowed value for the bit type. For
an 8- bit image this value is 255, 16-bit is 32767 and 32-bit is set equal to FLT_MAX as defined
in the file /usr/include/limits.h.

It is recommended that the user apply the resulting DIV "mask" with caution. In some cases, the
"mask" outlines are not continuous. When the "mask" is applied to the image, the discontinuous

filter (1) WHIPS v1.0 (11/1991) filter (1)

Appendix A - 38

lines can result in portions of the image, which are to be preserved, being dropped during the
masking operation.

Options: The following run-line commands are optional to the execution of the program.

-a addback

Specifies the add back (addback) value that is used by the high-pass and divide filters
only.

-v minval,maxval

Specifies the minimum and maximum values (minval,maxval) to be used to define the
valid data range.

-c coef

Specifies the coefficient (coef) to be used during the filtering process to expand the
results of the data during filtering. The value specified may be a floating-point value and
may be any value the user desires. The default coefficient value is 1.

-n norm

Specifies the normalization value (norm) used in the high-pass and divide filter
computations. The default normalization value for 8-bit image data is 127. For 16 or 32-
bit data, the default value is 0.

-m mingood

Specifies the minimum number of good points (mingood) that must be contained within
the boxcar before the filter is applied. The default value is 1. This option may be
superseded by specifying -f.

-f fraction_good

Specifies the fraction of the boxcar (fraction_good) that must contain valid data points
before the filter is applied to the image coordinate. Specifying this option would override
the -m option. The fraction_good is specified as the percentage of the boxcar that must
contain valid data points before a filter can be applied.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

The output file to be created must not currently exist.

SEE ALSO

/usr/include/limits.h

lowpass2b2(1), median3(1), mode3(1), mode5(1), ssfilter(1)

WHIPS(5)

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

BUGS

filter (1) WHIPS v1.0 (11/1991) filter (1)

Appendix A - 39

The 8 and 16-bit options have been extensively tested. The 32-bit option has not been fully tested.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

Appendix A - 40

gss (1) WHIPS v1.1 (7/1992) gss (1)

Appendix A - 41

NAME

gss - compute geographic coordinates of sidescan sonar pixels from a non-velocity processed
image

SYNOPSIS

gss -i input -r resolution >std_out [-l sl,el] [-h heading_adjustment] [-s nsamps | -d distance] [-H]

DESCRIPTION

The gss program will compute the geographic coordinates of each pixel in the scan line of a
WHIPS netCDF sidescan sonar image. The coordinate of each pixel is computed using the
heading value contained in the sidescan sonar attribute field, the sonar position associated with the
scan line, and the user supplied resolution value. The resolution value (-r) is the pixel resolution,
in meters, of the input image file.

By default, the program will process every image line and sample contained in the input file. The
user may select which lines of the image to process by specifying the -l option. When this option
is specified, the user must specify the starting line and ending line to process within the image.
The user may also optionally specify the number of samples (nsamps) or the distance (distance)
from nadir to be processed within each scan by selecting either the -s or -d program option. Each
sonar image line is processed from nadir to the specified far range with the port side being
processed first, followed by the starboard side. As the geographic coordinates of the pixels are
computed, the positions, along with the associated pixel value, are output to the std_out device.
The coordinates are recorded as decimal degree values and are output in latitude/longitude order.

The fish heading value contained in the sidescan sonar header fish attributes field may be adjusted
by the user by selecting the -h option. When this option is selected, the user must also specify a
heading adjustment value (heading_adjustment) to be added to the fish heading value before the
pixel coordinates are computed. This option, along with the ability to select a portion of the input
image to be processed, provides a simple way to "tweak" a segment of a sonar line when the
navigation data may not accurately reflect the track of the sonar fish. Hopefully this option will
assist in adjusting the sonar swaths and provide a simple way to lineup adjacent swaths.

As stated above, the program output is to std_out. This option was implemented to allow for
piping of the data through a series of steps to facilitate a stream processing to place the pixels
directly into a defined map space. If the input pixel value is equal to zero, the program will NOT
output the coordinate and pixel information. This was implemented to help reduce the amount of
pixels output and later processed.

The maximum and minimum geographic coordinates computed by the program are output to the
program print file.

The following run-line options must be specified and can occur in any order.

-i input_file

Specifies the input file to be processed. The input file must be 8 or 16-bit.

The input file must contain the sidescan sonar header information. If the user selects a
file that does not contain the required information, the program will display the message
ncvarid: variable "date" not found and processing will stop.

-r resolution

Specifies the pixel resolution, in meters, of the input image. This value is used to
compute the position of the pixel values from the known position at nadir.

gss (1) WHIPS v1.1 (7/1992) gss (1)

Appendix A - 42

Options: The following run-line commands are optional to the execution of the program.

-l sl,el

Specifies a sub-area of the input file to be processed. The sub-area is specified by
entering the starting line (sl) and the ending line (el) of the sonar image file to be
processed. This option, along with -s or -d, may be selected to specify a sub-area of the
sonar image to process.

-h heading_adjustment

Specifies a user-supplied value to be added to the fish heading value before computing
the pixel coordinates. This option may be used to adjust the fish heading and swath
orientation if the user suspects the fish coordinates do not accurately reflect the direction
of the fish.

-s nsamps

Specifies the number of samples (nsamps), port and starboard, to be processed from
nadir. For example, specifying nsamps as 225 would flag the program to process 225
samples from either side of nadir resulting in a total of 450 samples being output per
scan. This option, along with -l, may be selected to specify a sub-area of the sonar image
to process. If the user specifies nsamps as greater than the number of samples actually
contained in each side of the image scan, the value will be set to half the actual number of
samples contained in a line of the image file.

The user may optionally select the -d option to specify the distance from nadir to be
processed.

-d distance

Specifies the distance (distance), in meters, from nadir for which to process the image
samples. The user may specify this option, along with -l, to select a sub-area of the sonar
image to process.

The user may optionally select the -s option to specify the number of samples from nadir
to be processed.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

The program only accepts 8 or 16-bit image files.

The output file to be created must not currently exist.

The -s or -d options are exclusive. Only one may be selected.

NOTES

This program differs from gssv. Program gssv assumes a velocity stretched image. Gss assumes
an image that has not been velocity stretched and the program does not accommodate the duplicate
lines produced by velocity. If a velocity stretched image is input to program gss, the swaths with
duplicate positions are simply reprocessed over the previous line and would be redundant
processing.

EXAMPLE

gss (1) WHIPS v1.1 (7/1992) gss (1)

Appendix A - 43

The example below shows a simple application of the program to compute the coordinate values
for a sidescan sonar image processed at .5 meters.

% gss -i bos13.wco -r .5 >bos13_cord.dat

The example below shows the program usage to select a specified number of lines (275 lines) and
width (375 samples per side).

% gss -i gloria.head -r 50 -l 201,475 -s 375 >pass74b.dat

SEE ALSO

gss_vel(1), gssv(1), mapit(1), projss(1)

avg_heading(1), avg_position(1), sshead(1), sumss(1)

WHIPS(5), whips_sonar(5)

"Digital Processing of Side-Scan Sonar data with the Woods Hole Image Processing System
Software": U. S. Geological Survey Open-File Report 92-204, 11p.

"Digital Mapping of Side-Scan Sonar Data with the Woods Hole Image Processing system
Software": U.S. Geological Survey Open-File Report 92-536, 90p.

"MAPIT: An improved method for mapping digital sidescan sonar data using the Woods Hole
Image Processing System (WHIPS) Software": U.S. Geological Survey Open-File Report 96-281,
73p.

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

ncvarid: variable "date" not found - the selected input file does not contain the proper
sidescan sonar header information

BUGS

The 16-bit option has not been completely tested.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

Appendix A - 44

gss_vel (1) WHIPS v1.4 (4/1995) gss_vel (1)

Appendix A - 45

NAME

gss_vel - compute geographic coordinates of sidescan sonar pixels and corrects the sonar
imagery for changes in ship's velocity

SYNOPSIS

gss_vel -i input -r resolution [[options ...] [-E ellips] ... [-H]] >std_out

DESCRIPTION

The gss_vel program will compute the geographic coordinates of each pixel in the scan line of a
WHIPS netCDF sidescan sonar image. The input file MUST be a sidescan sonar image that has
NOT been velocity stretched. Gss_vel combines the functions of programs gss and velocity
because it will apply the velocity corrections as each swath is processed. The velocity correction
is applied by the program by first computing the distance traveled between consecutive swaths and
then the number of times an individual line should be duplicated to fill the image to the position of
the next swath. Velocity stretching of a sidescan sonar image is accomplished by duplicating
individual swath lines in an attempt to produce an image with the same across and along-track
resolution. The velocity correction may not be necessary for mid or low-range sidescan sonar
which have s̀quare' pixels.

The program begins by calculating the number of times the individual line to be processed should
be duplicated so it will meet the following line and reduce the gap in the map space between the
consecutive lines. The duplication factor is calculated first by determining the distance traveled
between a pair of consecutive lines contained in the sidescan sonar image. The distance traveled
between the consecutive swaths is determined by comparing the position coordinates contained in
the sidescan sonar header. The user may select the spheroid (-E) to be used in the distance
computation from one of five available ellipsoids. With the distance traveled between the
consecutive lines known, the program then computes the number of times a line should be
duplicated to fill the image space up to the placing of the next swath based on the sidescan sonar
image resolution (-r) specified by the user.

As each individual swath is processed, the geographic coordinate of each pixel is computed using
the heading value contained in the sidescan sonar attribute field, the sonar position associated with
the scan line, and the user supplied resolution value. The resolution value (-r) is the pixel
resolution, in meters, of the input image file. As each individual line is duplicated, a new nadir
position is calculated based on the sonar resolution (-r) and the heading contained in the sidescan
sonar header. Geographic coordinates are then computed for the pixels contained in the duplicate
lines to allow the proper placement of the swaths and to reduce the gaps that can occur between
swaths.

The program computes the geographic coordinates of the pixels and, if necessary, the new
positions of the duplicate lines by a simple distance computation utilizing one of five earth
ellipsoids. By default, gss_vel uses the Clarke 1866 spheroid in these computations. The user
may select alternate earth ellipsoids by specifying the -E option on the program run-line. The
available ellipsoids are 1) Clarke 1866 (default); 2) International 1909 (Hayford); 3) Geodetic
Reference System 1980; 4) WGS 1984; and 5) WGS 1972.

By default, the program will process every image line and sample contained in the input file. The
user may select which lines of the image to process by specifying the -l option. When this option
is specified, the user must specify the starting line and ending line to process within the image.
The user may also optionally specify the number of samples (nsamps) or the distance (distance)
from nadir to be processed within each scan by selecting either the -s or -d program option. Each
sonar image line is processed from nadir to the specified far range with the port side being
processed first, followed by the starboard side. As the geographic coordinates of the pixels are
computed, the position, along with the associated pixel value, is output to the std_out device. The
coordinates are recorded as decimal degree values and are output in latitude/longitude order.

gss_vel (1) WHIPS v1.4 (4/1995) gss_vel (1)

Appendix A - 46

The fish_heading value contained in the sidescan sonar header fish attributes field may be adjusted
by the user by selecting the -h option. When this option is selected, the user must also specify a
heading adjustment value (heading_adjustment) to be added to the fish heading value before the
pixel coordinates are computed. This option, along with the ability to select a portion of the input
image to be processed, provides a simple way to "tweak" a segment of a sonar line when the
navigation data may not accurately reflect the track of the sonar fish. Hopefully this option will
assist in adjusting the sonar swaths and provide a simple way to lineup adjacent swaths.

As stated above, the program output is to std_out. This option was implemented to allow for
piping of the data through a series of steps to facilitate a stream processing to place the pixels
directly into a defined map space. If the input pixel value is equal to zero, the program will NOT
output the coordinate and pixel information. This was implemented to help reduce the amount of
pixels output and later processed.

The maximum and minimum geographic coordinates computed by the program are output to the
program print file.

The following run-line options must be specified and can occur in any order.

-i input_file

Specifies the input file to be processed. The input file must be 8 or 16-bit.

The input file must contain the sidescan sonar header information. If the user selects a
file that does not contain the required information, the program will display the message
ncvarid: variable "date" not found and processing will stop.

-r resolution

Specifies the pixel resolution, in meters, of the input image. This value is used to
compute the position of the pixel values from the known position at nadir.

Options: The following run-line commands are optional to the execution of the program.

-l sl,el

Specifies a sub-area of the input file to be processed. The sub-area is specified by
entering the starting line (sl) and the ending line (el) of the sonar image file to be
processed. This option, along with -s or -d, may be selected to specify a sub-area of the
sonar image to process.

-h heading_adjustment

Specifies a user supplied value to be added to the fish heading value before computing
the pixel coordinates. This option may be used to adjust the fish heading and swath
orientation if the user suspects the fish coordinates do not accurately reflect the direction
of the fish.

-s nsamps

Specifies the number of samples (nsamps), port and starboard, to be processed from
nadir. For example specifying nsamps as 225 would flag the program to process 225
samples from either side of nadir resulting in a total of 450 samples being output per
scan. This option, along with -l, may be selected to specify a sub-area of the sonar image
to process. If the user specifies nsamps as greater than the number of samples actually
contained in each side of the image scan, the value will be set to half the actual number of
samples contained in a line of the image file.

gss_vel (1) WHIPS v1.4 (4/1995) gss_vel (1)

Appendix A - 47

The user may optionally select the -d option to specify the distance from nadir to be
processed.

-d distance

Specifies the distance (distance), in meters, from nadir for which to process the image
samples. The user may specify this option, along with -l, to select a sub-area of the sonar
image to process.

The user may optionally select the -s option to specify the number of samples from nadir
to be processed.

-E ellips

Specifies the earth ellipsoid (ellips) to be used in the computation of the pixel and line
coordinates. The ellips value may be specified as one of the following values:

1 = Clarke 1866
2 = International 1909 (Hayford)
3 = Geodetic Reference System 1980
4 = WGS 1984
5 = WGS 1972

-R
Flags the program to round-up the number of times a sidescan sonar swath is to be
duplicated to accommodate the velocity stretching. For example, when the program
computes a line duplication factor of 3.5, the program, by default, will output the line
only three times. If the -R option has been selected on the program run-line, line
duplication factor would be rounded-up and the specific line being processed would be
duplicated four times.

This option may help reduce the gaps that can exist between adjacent lines as they are
placed in the map space. It will also increase the processing time and will affect the
resultant image by increasing the blockiness of the sonar map image.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

The program only accepts 8 or 16-bit image files.

The output file to be created must not currently exist.

The -s or -d options are exclusive. Only one may be selected.

NOTES

This program combines the functions of programs gss and velocity. In addition to the pixel
coordinate computation which program gss provides, this program will correct the image for
changes in ship's velocity by duplicating the line being processed up to the position of the
following line.

This program also differs slightly from gssv. Program gssv requires the sidescan sonar input file
to have been previously processed through program velocity.

EXAMPLE

gss_vel (1) WHIPS v1.4 (4/1995) gss_vel (1)

Appendix A - 48

The example below shows a simple application of the program to compute the coordinate values
for a sidescan sonar image processed at .5 meters using the default Clarke 1866 spheroid.

% gss_vel -i bos13.wco -r .5 >bos13_cord.dat

The example below shows the program usage to select a specified number of lines (275 lines) and
width (375 samples per side). The -R option has been selected to help reduce the gaps between
the placement of the consecutive sidescan sonar swaths. The -E option has also be specified to
utilized the International 1909 spheroid.

% gss_vel -i gloria.head -r 50 -l 201,475 -s 375 -E 2 -R >pass74b.dat

SEE ALSO

gss(1), gssv(1), mapit(1), projss(1)

avg_heading(1), avg_position(1), sshead(1), sumss(1)

WHIPS(5), whips_sonar(5)

"Digital Processing of Sidescan Sonar data with the Woods Hole Image Processing System
Software": U. S. Geological Survey Open-File Report 92-204, 11p.

"Digital Mapping of Sidescan Sonar Data with the Woods Hole Image Processing system
Software": U.S. Geological Survey Open-File Report 92-536, 90p.

"MAPIT: An improved method for mapping digital sidescan sonar data using the Woods Hole
Image Processing System (WHIPS) Software": U.S. Geological Survey Open-File Report 96-281,
73p.

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

ncvarid: variable "date" not found - the selected input file does not contain the proper
sidescan sonar header information

BUGS

The 16-bit option has not been completely tested.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

gssv (1) WHIPS v1.1 (7/1992) gssv (1)

Appendix A - 49

NAME

gssv - compute geographic coordinates of sidescan sonar pixels from a velocity corrected image

SYNOPSIS

gssv -i input -r resolution >std_out [-l sl,el] [-h heading_adjustment] [-s nsamps | -d distance] [-H]

DESCRIPTION

The gssv program will compute the geographic coordinates of each pixel in the scan line of a
WHIPS netCDF sidescan sonar image. The input file should be a sonar image that has been
velocity corrected. Velocity correction of a sidescan sonar image is generally accomplished by
duplicating swath lines to produce an image with the same across and along-track resolution.
Since the lines are duplicated by velocity, two or more consecutive image lines will contain the
same latitude and longitude coordinates. Gssv will compare the latitude and longitude coordinates
of the current line being processed from the coordinates of the last line processed. If the position
values are the same, gssv will adjust the position by computing a new pair of latitude and
longitude coordinates based on the image resolution (-r) and the heading contained in the sidescan
sonar header. The new positions are computed for the duplicate lines to allow the proper
placement of the swaths and to reduce the gaps that can occur between the swaths.

As each swath is processed, the coordinate of each pixel is computed using the heading value
contained in the sidescan sonar attribute field, the sonar position associated with the scan line, and
the user supplied resolution value. The resolution value (-r) is the pixel resolution, in meters, of
the input image file.

By default, the program will process every image line and sample contained in the input file. The
user may select which lines of the image to process by specifying the -l option. When this option
is specified, the user must specify the starting line and ending line to process within the image.
The user may also optionally specify the number of samples (nsamps) or the distance (distance)
from nadir to be processed within each scan by selecting either the -s or -d program option. Each
sonar image line is processed from nadir to the specified far range with the port side being
processed first, followed by the starboard side. As the geographic coordinates of the pixels are
computed, the positions, along with the associated pixel value, are output to the std_out device.
The coordinates are recorded as decimal degree values and are output in latitude/longitude order.

The fish heading value contained in the sidescan sonar header fish attributes field may be adjusted
by the user by selecting the -h option. When this option is selected, the user must also specify a
heading adjustment value (heading_adjustment) to be added to the fish heading value before the
pixel coordinates are computed. This option, along with the ability to select a portion of the input
image to be processed, provides a simple way to "tweak" a segment of a sonar line when the
navigation data may not accurately reflect the track of the sonar fish. Hopefully this option will
assist in adjusting the sonar swaths and provide a simple way to lineup adjacent swaths.

As stated above, the program output is to std_out. This option was implemented to allow for
piping of the data through a series of steps to facilitate a stream processing to place the pixels
directly into a defined map space. If the input pixel value is equal to zero, the program will NOT
output the coordinate and pixel information. This was implemented to help reduce the amount of
pixels output and later processed.

The maximum and minimum geographic coordinates computed by the program are output to the
program print file.

The following run-line options must be specified and can occur in any order.

-i input_file

gssv (1) WHIPS v1.1 (7/1992) gssv (1)

Appendix A - 50

specifies the input file to be processed. The input file must be 8 or 16-bit.

The input file must contain the necessary sidescan sonar header information. If the user
selects a file that does not contain the sidescan sonar header information, the program
will display the message ncvarid: variable "date" not found and
processing will stop.

-r resolution

specifies the pixel resolution (resolution), in meters, of the input image. This value is
used to compute the position of the pixel values from the known position at nadir.

Options: The following run-line commands are optional to the execution of the program.

-l sl,el

specifies a sub-area of the input file to be processed. The sub-area is specified by
entering the starting line (sl) and the ending line (el) of the sonar image file to be
processed. This option, along with -s or -d, may be selected to specify a sub-area of the
sonar image to process.

-h heading_adjustment

specifies a user supplied value to be added to the fish heading value before computing the
pixel coordinates. This option may be used to adjust the fish heading and swath
orientation if the user suspects the fish coordinates do not accurately reflect the direction
of the fish.

-s nsamps

specifies the number of samples (nsamps), port and starboard, to be processed from nadir.
For example specifying nsamps as 225 would flag the program to process 225 samples
from either side of nadir resulting in a total of 450 samples being output per scan. This
option, along with -l, may be selected to specify a sub-area of the sonar image to process.
If the user specifies nsamps as greater than the number of samples actually contained in
each side of the image scan, the value will be set to half the actual number of samples
contained in a line of the image file.

The user may optionally select the -d option to specify the distance from nadir to be
processed.

-d distance

specifies the distance (distance), in meters, from nadir for which to process the image
samples. The user may specify this option, along with -l, to select a sub-area of the sonar
image to process.

The user may optionally select the -s option to specify the number of samples from nadir
to be processed.

-H
displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

The program only accepts 8 or 16-bit image files.

The output file to be created must not currently exist.

The -s or -d options are exclusive. Only one may be selected.

gssv (1) WHIPS v1.1 (7/1992) gssv (1)

Appendix A - 51

NOTES

This program differs from gss since this program assumes a velocity stretched image and can
accommodate the duplicate lines and fish position values.

This program also differs slightly from gss_vel. Program gss_vel combines the functions of
programs gss and velocity.

EXAMPLE

The example below shows a simple application of the program to compute the coordinate values
for a sidescan sonar image processed at .5 meters.

% gssv -i bos13.wco -r .5 >bos13_cord.dat

The example below shows the program usage to select a specified number of lines (275 lines) and
width (375 samples per side).

% gssv -i gloria.head -r 50 -l 201,475 -s 375 >pass74b.dat

SEE ALSO

gss(1), gss_vel(1), mapit(1), projss(1)

avg_heading(1), avg_position(1), sshead(1), sumss(1)

WHIPS(5), whips_sonar(5)

"Digital Processing of Sidescan Sonar data with the Woods Hole Image Processing System
Software": U. S. Geological Survey Open-File Report 92-204, 11p.

"Digital Mapping of Sidescan Sonar Data with the Woods Hole Image Processing system
Software": U.S. Geological Survey Open-File Report 92-536, 90p.

"MAPIT: An improved method for mapping digital sidescan sonar data using the Woods Hole
Image Processing System (WHIPS) Software": U.S. Geological Survey Open-File Report 96-281,
73p.

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

ncvarid: variable "date" not found - the selected input file does not contain the proper
sidescan sonar header information

BUGS

The 16-bit option has not been completely tested.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

Appendix A - 52

listhdr (1) WHIPS v1.0 (11/1991) listhdr (1)

Appendix A - 53

NAME

listhdr - list the contents of a sidescan sonar header in a WHIPS netCDF sidescan sonar image

SYNOPSIS

listhdr -i input [-l linc] [-j] [-S] [-P print file] [-H]

DESCRIPTION

The listhdr program will list the header information from a sidescan sonar image. By default, the
line number, year, month, day, hour, minute, seconds, latitude, longitude, heading and fish altitude
information is displayed. If a field contained in the sidescan sonar header is printed that does not
contain valid information, inf will be output in the appropriate field. The inf reflects that the field
has been filled with system dependent infinity value for that data type.

The information is displayed on the user's terminal but may be output to a file by re-direction of
std_out or selecting the -P option on the run-line.

The following run-line options must be specified and can occur in any order.

-i input_file

Specifies the input file to be processed. The input file must be 8-bit.

The input file must contain the sidescan sonar header information. If the user selects a
file that does not contain the proper information, the program will display the message
ncvarid: variable "date" not found and the processing will stop.

Options: The following run-line commands are optional to the execution of the program.

-l linc

Specifies the line increment (linc) at which to output the lines from the input file. The
default linc value is 1.

-j
Flags the program to replace the day and month information with the day of year value in
the output.

-S
Flags the program that, in addition to the default information, output the sonar pitch roll
and yaw information.

-P print_file

Specifies the print file to re-direct the output information to.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

The input file selected must contain the required sidescan sonar header information.

listhdr (1) WHIPS v1.0 (11/1991) listhdr (1)

Appendix A - 54

EXAMPLE

The example will output the sidescan sonar header from file bos13.slr and output the information
to bos13.hdr. The first ten records of the header file are the listed below.

% listhdr -i bos13.slr -P bos13.hdr

% head bos13.hdr
 1: 1985 10 9 5 0 0.000 25.392599 -84.828300 0.0 3356.00
 2: 1985 10 9 5 0 30.000 25.391350 -84.827751 0.0 3356.00
 3: 1985 10 9 5 1 0.000 25.390100 -84.827202 0.0 3356.00
 4: 1985 10 9 5 1 30.000 25.388849 -84.826653 0.0 3356.00
 5: 1985 10 9 5 2 0.000 25.387600 -84.826103 0.0 3356.00
 6: 1985 10 9 5 2 30.000 25.386351 -84.825546 0.0 3356.00
 7: 1985 10 9 5 3 0.000 25.385099 -84.824997 0.0 3356.00
 8: 1985 10 9 5 3 30.000 25.383850 -84.824463 0.0 3356.00
 9: 1985 10 9 5 4 0.000 25.382601 -84.823898 0.0 3356.00
10: 1985 10 9 5 4 30.000 25.381350 -84.823372 0.0 3356.00

SEE ALSO

replacehdr(1), strphdr(1)

WHIPS(5), whips_sonar(5)

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

ncvarid: variable "date" not found - the selected input file does not contain the proper
sidescan sonar header information

BUGS

None known.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

lowpass2b2 (1) WHIPS v1.0 (11/1991) lowpass2b2 (1)

Appendix A - 55

NAME

lowpass2b2 - applies a 2 by 2 low-pass filter to an image

SYNOPSIS

lowpass2b2 -i input -o output [-H]

DESCRIPTION

Program lowpass2b2 applies a small low-pass smoothing filter to an image. The low-pass filter
consists of a 2-by-2 moving boxcar. The image is smoothed by the filter with the boxcar applied
starting at the upper left origin of the image and moving across each line of input data and down
through the input image. With the exception of the first line and ending sample of each line, the
filter is applied by computing the average of 4 neighboring pixels with the result being stored in
the lower left pixel. The filter is applied to the entire image.

An example of how the program computes the pixel averages is as follows:

input output

line 1: 11 22 11 22 |

line 2: 33 44 28 44

The first input image line is a special case and is smoothed by applying a 1-by-2 low-pass filter.

input output

line 1: 11 22 33 44 17 28 39 ..

line 2: 33 44 55 66 28 39 50 ..

The last sample of each line is also a special case and is processed as a 2-by-1 low-pass filter.

input output

line 1: 11 22 44 17 33 44

line 2: 33 44 66 28 88 55

line 3: 55 66 88 50 66 77

line 4: 77 88 99 72 85 94

The following run-line options must be specified and can occur in any order.

-i input_file

Specifies the input file to be processed. The input file must be 8-bit.

lowpass2b2 (1) WHIPS v1.0 (11/1991) lowpass2b2 (1)

Appendix A - 56

-o output_file

Specifies the output file to be created.

Options: The following run-line commands are optional to the execution of the program.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

The program accepts only 8-bit image files.

The output file to be created must not currently exist.

EXAMPLE

% lowpass2b2 -i gloria.vel -o gloria.2b2

SEE ALSO

filter(1), median3(1), mode3(1), mode5(1)

WHIPS(5)

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

median3 (1) WHIPS v1.0 (5/1992) median3 (1)

Appendix A - 57

NAME

median3 - apply a 3-by-3 median filter to an image

SYNOPSIS

median3 -i input -o output [-z] [-H]

DESCRIPTION

The median3 program allows the user to apply a 3-by-3 median filter to a WHIPS image.
Median3 will modify the value centered on a 3-by-3 boxcar with the median value computed from
the neighborhood distribution. The neighborhood, n, consists of 9 values (3x3), and the median
value is computed as i,j = 5 = (n+1)/2 after the data has been arranged in increasing order.

The user may apply this program to fill zero values contained within an image by selecting the -z
option on the run-line. When this option is selected, only those pixel values from the input file
equal to zero are modified. However, all input pixel values, including those equal to zero, are
used to compute the median value.

Median3 is most suitable for data that has a skewed distribution. However, the value obtained for
the median may not be representative if the individual items do not tend to cluster at the center of
the distribution.

Special processing takes place to handle the first and last lines of the image file. Adjacent lines
are weighted to allow for unfolding to take place during the processing. When computing the 3-
by-3 median of the first image line from the input file, the second line is read twice and used in the
computation. To process the last line contained in the image line, the next to last line is read twice
and used for the computation.

In addition to the special line processing, the program applies a similar overlapping procedure to
the samples at the beginning and ending of each line. For the first and last samples contained in
the image lines, the neighboring pixels are doubly weighted to allow for the foldover
computations.

The following run-line options must be specified and can appear in any order.

-i input_file

Specifies the input file to be processed. The input file may be 8, 16 or 32-bit image.

-o output_file

Specifies the output file to be created.

Options: The following run-line commands are optional to the execution of the program.

-z
Flags the program to apply the filter only when the center value of the neighborhood is
zero. This will allow the user to apply the 3-by-3 median filter as a zero only replacement
filter.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

median3 (1) WHIPS v1.0 (5/1992) median3 (1)

Appendix A - 58

The output file to be created must not currently exist.

EXAMPLE

% median3 -i map.cdf -o map.med3

NOTES

Though a histogram method could be employed to calculate the median value for 8-bit data, the
histogram method would be more difficult to implement for 16 and 32-bit data. Therefore
median3 is set-up to sort (via the UNIX library function qsort) the data values and can be quickly
applied to 16 and 32-bit data as well as 8-bit.

SEE ALSO

lowpass2b2(1), filter(1), mode3(1), mode5(1)

WHIPS(5)

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

BUGS

The 16 and 32-bit options have not been thoroughly tested.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

mode3 (1) WHIPS v1.1 (5/1992) mode3 (1)

Appendix A - 59

NAME

mode3 - apply a 3-by-3 mode filter to an image

SYNOPSIS

mode3 -i input -o output [-z] [-Z] [-H]

DESCRIPTION

The mode3 program allows the user to apply a 3-by-3 mode filter to a WHIPS image. Mode3
will modify the value centered on a 3-by-3 boxcar with the mode value computed from the
neighborhood distribution. The neighborhood, n, consists of 9 values (3x3), and the mode value is
the value which occurs most often within the neighborhood. In a neighborhood of 9 values it is
possible that no mode value can be determined. For example, 9 different values may occur within
the neighborhood or 2 different values may occur 4 times. When no mode value can be computed
for the neighborhood, the input pixel value for that location is output unchanged.

The user may apply this program to replace zero values contained within an image by selecting the
-z option on the run-line. When this option is selected, only those pixel values from the input file
equal to zero are modified. However, all input pixel values, including that equal to zero, are used
to compute the mode value.

In addition to the zero replacement option (-z), the user may select not to include the zero values
from the image when computing the mode value by selecting the -Z program option. When this
option is selected, the zero values for the neighborhood are not included when totaling the
occurrences of the unique values for the neighborhood. The -z and -Z options are not mutually
exclusive and may be selected individually or together during a single execution of the program.
Selection of these program options is at the user's discretion depending on the results he or she
wishes to achieve.

Special processing takes place to handle the first and last lines of the image file. Adjacent lines
are weighted to allow for unfolding to take place during the processing. When computing the 3-
by-3 mode of the first image line from the input file, the second line is read twice and used in the
computation. To process the last line contained in the image line, the next to last line is read twice
and used for the computation.

In addition to the special line processing, the program applies a similar overlapping procedure to
the samples at the beginning and ending of each line. For the first and last samples contained in
the image lines, the neighboring pixels are doubly weighted to allow for the foldover
computations.

The following run-line options must be specified and can appear in any order.

-i input_file

Specifies the input file to be processed. The input file may be 8, 16 or 32-bit image.

-o output_file

Specifies the output file to be created.

Options: The following run-line commands are optional to the execution of the program.

-z
Flags the program to apply the filter only when the center value of the neighborhood is
zero. This will allow the user to apply the 3-by-3 mode filter as a zero only replacement
filter.

mode3 (1) WHIPS v1.1 (5/1992) mode3 (1)

Appendix A - 60

-Z
Flags program not to include zero values when computing the mode value. This option
can be helpful when trying to apply the mode as a zero replacement filter and the mode in
some neighborhoods are zero.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

The output file to be created must not currently exist.

EXAMPLE

The example below shows a simple execution of the program.

% mode3 -i map.cdf -o map.mode3

The example below shows a possible execution of the program to replace zero values within the
image that excludes zero values from the mode computation.

% mode3 -i map.cdf -o map.mode3zr -z -Z

NOTES

Though a histogram method could be employed to calculate the mode value for 8-bit data, that
method would be more difficult to implement for 16 and 32-bit data. Therefore mode3 is set-up
to sort (via the UNIX library function qsort) the data values and then count the number of times a
unique value occurs within the neighborhood. The program will then compute the mode value and
this technique can be applied to 16 and 32-bit data as well as 8-bit.

SEE ALSO

lowpass2b2(1), filter(1), median3(1), mode5(1)

WHIPS(5)

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

BUGS

The 16 and 32-bit options have not been thoroughly tested.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

mode5 (1) WHIPS v1.1 (5/1992) mode5 (1)

5/8/98 61

NAME

mode5 - apply a 5-by-5 mode filter to an image

SYNOPSIS

mode5 -i input -o output [-z] [-Z] [-H]

DESCRIPTION

The mode5 program allows the user to apply a 5-by-5-mode filter to a WHIPS netCDF image.
Mode5 will modify the value centered on a 5-by-5 boxcar with the mode value computed from the
neighborhood distribution. The neighborhood, n, consists of 25 values (5x5), and the mode value
is the value which occurs most often within the neighborhood. In a neighborhood of 25 values it
is possible that no mode value can be determined. For example, 25 different values may occur
within the neighborhood or 5 different values may occur 5 times. When no mode value can be
computed for the neighborhood, the input pixel value for that location is output unchanged.

The user may apply this program to fill zero values contained within an image by selecting the -z
option on the run-line. When this option is selected, only those pixel values from the input file
equal to zero are modified. However, all input pixel values, including that equal to zero, are used
to compute the mode value.

In addition to the zero replacement option (-z), the user may select not to include the zero values
from the image when computing the mode value by selecting the -Z program option. When this
option is selected, the zero values for the neighborhood are not included when totaling the
occurrences of the unique values for the neighborhood. The -z and -Z options are not mutually
exclusive and may be selected individually or together during a single execution of the program.
Selection of these program options is at the user's discretion depending on the results he or she
wishes to achieve.

Special processing takes place to handle the first two and last two lines of the image file. Adjacent
lines are weighted to allow for unfolding to take place during the processing. When computing
the 5-by-5 mode of the first image line from the input file, the second and third lines are read twice
and used in the computation. To process the second line in the input file, the third and fourth
lines are read once and the first line is read twice to allow for the foldover processing. Similarly,
the last two lines contained in the image are handled with unique weighting done to the adjacent
lines.

In addition to the special line processing, the program applies a similar overlapping procedure to
the samples at the beginning and ending of each line. For the first and last two samples contained
in the image lines, the neighboring pixels are doubly weighted to allow for the foldover
computations.

The following run-line options must be specified and can appear in any order.

-i input_file

Specifies the input file to be processed. The input file may be 8, 16 or 32-bit image.

-o output_file

Specifies the output file to be created.

Options: The following run-line commands are optional to the execution of the program.

-z

mode5 (1) WHIPS v1.1 (5/1992) mode5 (1)

5/8/98 62

Flags the program to apply the filter only when the center value of the neighborhood is
zero. This will allow the user to apply the 5-by-5-mode filter as a zero only replacement
filter.

-Z
Flags program not to include zero values when computing the mode value. This option
can be helpful when trying to apply the mode as a zero replacement filter and the mode in
some neighborhoods are zero.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

The output file to be created must not currently exist.

EXAMPLE

The example below shows a simple execution of the program.

% mode5 -i map.cdf -o map.mode5

The example below shows a possible execution of the program to replace zero values within the
image while excluding any zero values from the mode computation.

% mode5 -i map.cdf -o map.mode5zr -z -Z

NOTES

Though a histogram method could be employed to calculate the mode value for 8-bit data, that
method would be more difficult to implement for 16 and 32-bit data. Therefore mode5 is set-up to
sort (via the UNIX library function qsort) the data values and then count the number of times a
unique value occurs within the neighborhood. The program will then compute the mode value and
this technique can be applied to 16 and 32-bit data as well as 8-bit.

SEE ALSO

lowpass2b2(1), filter(1), median3(1), mode3(1)

WHIPS(5)

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

BUGS

The 16 and 32-bit options have not been thoroughly tested.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

projss (1) WHIPS v1.1 (5/1992) projss (1)

Appendix A - 63

NAME

projss - place projected side-scan sonar data in a map/image space

SYNOPSIS

projss -o output < std_in [-H]

DESCRIPTION

Projss will take the sidescan sonar data output from one of the sidescan sonar geographic
coordinate computation programs (gss, gss_vel or gssv) and proj and create a WHIPS netCDF
image which represents a map of the sonar data for a specific area, projection and scale. The first
four input records must contain the map area bounds, in meters, for the user selected desired map
area. Subsequent data records must contain the sidescan sonar pixel coordinate and their
associated pixel value. Each pixel coordinate contained in the sidescan sonar data must have been
previously converted to geographic coordinates by program gss, gss_vel or gssv, and, further,
converted to meter coordinates for the selected map area by program proj . The map coordinates
must be in y x (latitude longitude) order and the coordinate pairs must be integer values.

Program input is through std_in. As stated above, the actual input to program projss is the
sidescan sonar pixel coordinates that have been converted to meter values based on a specific map
projection and scale. The first four records of the input file MUST BE the map corner
coordinates, in meters, for the map projection and scale. The map corner coordinates must be
specified in the following order:

upper left
upper right
lower right
lower left

For example, if the user desires to create a 2o map at a scale of 1:100 for an area bounded by 35o to
37o latitude and -75o to -77o longitude for a simple Mercator map, the first four records of the
input file would contain the following information:

44132 -85717
44132 -83491
41391 -83491
41391 -85717

Program projss will begin by reading the first four pairs of coordinates from the input file. Once
the program has obtained this information it will calculate the size of the image (number of lines
and number of samples). When the size of the WHIPS netCDF image has been computed, projss
will then create the image file on disk and fills the image with blank lines before beginning to
place the pixel values in the image.

The remainder of data in the input file must be the pixel coordinates and pixel values which projss
will place in the appropriate map space. The information which follows must be the pixel
coordinates, in meters, along with the 8-bit pixel value. Program projss accepts and calculates the
location (the actual image line and sample coordinate) within the map space for the input pixel dn
values. The program then places, on a pixel-by-pixel basis, the sidescan sonar dn values. It is
important to note that the pixel placement is done on a pixel-by-pixel basis. When multiple dn
values are computed for the same location, projss will always place the last pixel input in the
output location regardless of the coordinates previous content.

projss (1) WHIPS v1.1 (5/1992) projss (1)

Appendix A - 64

Program proj is essential in creating the final map product. The user should be familiar with its
usage and various options. Some proj options must be specified to create the proper data output
for program projss.

The following run-line options must be specified and can occur in any order.

-o output_file

Specifies the output file to be created. The output file will be an 8-bit WHIPS image.

Options: The following run-line commands are optional to the execution of the program.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

The output file to be created must not currently exist.

The input meter coordinates must be recorded as integer values.

EXAMPLE

The example below shows a simple execution of the program. The first four pairs of coordinates
contained in the file, project.dat, must be the projected map area bounds.

% projss -o map2.cdf <projec.dat

The following is a typical example using program gss and proj as filters to complete the
processing and mapping of a sidescan sonar image. The input image to program gss, gloria.wco,
contains a pixel resolution of 50 meters. The data is to be mapped at 100 meter resolution to an
Albers Equal Area projection using standard parallels and a central longitude of 85o. The file,
bounds.dat, must contain the map corner coordinates and is show below.

% gss -i gloria.wco -r 50 | \
 proj +proj=aea +lon_0=-85 +lat_1=29.5 +lat_2=45.5 -r -s \
 -m 1:100 -f `%.0f' bounds.dat - | projss -o map2.cdf

% more bounds.dat
25.5 -85 # upper left corner
25.5 -84 # upper right corner
24.5 -84 # lower right corner
24.5 -85 # lower left corner

SEE ALSO

gss(1), gss_vel(1), gssv(1), proj(1), mapit(1)

filter(1), median3(1), mode3(1), mode5(1)

WHIPS(5)

User's Manual for MAPGEN (UNIX version): a method of transforming digital cartographic data
to a map: U. S. Geological Survey Open-File Report 85-706, 134 p.

projss (1) WHIPS v1.1 (5/1992) projss (1)

Appendix A - 65

Cartographic Projection Procedures for the UNIX Environment - A User's Manual: U. S.
Geological Survey Open-File Report 90-284, 62p.

"Digital Mapping of Sidescan Sonar Data with the Woods Hole Image Processing System
Software": U.S. Geological Survey Open-File Report 92-536, 90p.

"MAPIT: An improved method for mapping digital sidescan sonar data using the Woods Hole
Image Processing System (WHIPS) Software": U.S. Geological Survey Open-File Report 96-281,
73p.

NOTES

There are three major drawbacks to the pixel-by-pixel method employed in this program/mapping
procedure and they are discussed below. Note of the drawbacks are made in an attempt to warn
the user of possible problems which could affect the quality of their final mosaic when using the
gss | proj | projss processing scenario, and to discuss possible future processing alternatives.

The first and second drawbacks are due to the random order of the input pixels being placed. This
random input results in a last-in placement for coordinates that may have two or more valid pixels.
Since the program can not place in order the multiple values for a given coordinate, the program
must deal with each pixel as a unique value and is placed in its coordinate location regardless of
any pixel values which may have been previously placed. Even a simple comparison for
placement of pixels in non-zero locations and averaging of the pixels would be restrictive due to
the overhead placed in computing. Secondly, if the input pixels could be placed in sorted order
from the image origin down to the last line and last sample to be placed, processing could be
accomplished by "building" a complete image line. This would result in fewer writes to the output
file since a complete line of image data could be written rather than the many single writes which
must be done for each pixel input. Fewer writes would hopefully speed up processing. However,
when processing over a half million pixels at a time (a modest file at best), speed may be best
accomplished by increased workstation performance. The sorted order of the data would also be
beneficial by allowing the program to compare multiple pixel values for a specific coordinate and
select the final output pixel value by averaging or selecting either the minimum or maximum
value.

The third drawback is the "holes" which may develop as the pixels are placed in the map space.
These "holes" may be best eliminated, or reduced in number, by the user carefully selecting the
resolution of the sonar data being processed with the goal in mind of the final resolution of the
map to be created. If the user selects to process their sonar strips at .5 meters and their final map
resolution is 1 meter, fewer "holes" will develop from the pixel placement. An obvious drawback
is the volume of pixels that will have to be processed resulting in longer execution time. The user
must consider the trade-off of processing such enormous volumes of data or what "holes" may be
created in the mapping process. These "holes" must be filled in some manner. The preferred
method would be some form of interpolation based on the orientation of the scan line and the
appropriate neighboring pixels. To accomplish such a task, the sonar data must be processed on a
swath-by-swath basis with two consecutive swath's being processed at a time. Unfortunately, the
ability to handle the data on a pixel-by-pixel basis is the only option currently available. This
results in the "holes" or gaps that may by created to be filled in some manner after the sonar map
has been created. Possible options are either a low-pass filter replacing zero values, a 3-by-3
mode or median filter, a 5-by-5 median filter or some combination of the former. The "filtering"
options are less than perfect since the zero pixels are filled relative to the orientation of the boxcar
passing over the image, not the orientation of the scan lines. It may be with careful selection and
application of the filters, the image will not be degraded significantly.

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

projss (1) WHIPS v1.1 (5/1992) projss (1)

Appendix A - 66

BUGS

The program was written to assist in testing the necessary programs and steps to utilize program
proj while prototyping the sidescan sonar line-by-line mapping. Program projss was not intended
to be a final product program and does not contain sufficient user input checks. Therefore, the
program may appear to run successfully and yet produce wild results based on the user's incorrect
input.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

qmos (1) WHIPS v1.2 (8/1992) qmos (1)

Appendix A - 67

NAME

qmos - quick mosaic of two WHIPS netCDF images

SYNOPSIS

qmos -i input -o output [-I | -O | -A] [-H]

DESCRIPTION

Program qmos will mosaic (overlay) the specified input file (-i) over the specified output (-o) file.
The program will either overlay where the input file has priority over the existing output file (-I ,
program default), where the output file has priority (-O) over the input file, or average (-A) non-
zero pixel values together from the input and existing output file.

The following run-line options must be specified and can occur in any order.

-i input_file

Specifies the input file to be processed. The input file may be 8, 16 or 32-bit.

-o output_file

Specifies the output file to be modified. The output file must currently exist.

Options: The following run-line commands are optional to the execution of the program.

-I
Flags the program that non-zero pixel values in the input file are to take precedence. This
is the program default. When the input file takes precedence, the non-zero value of a
specific pixel coordinate will be replaced by the non-zero input pixel value for that
location.

-O
Flags the program that non-zero pixel values in the output file are to take precedence.
When the output file takes precedence, the non-zero value of a specific pixel coordinate
will not be replaced by the non-zero input pixel value for that location.

-A
Flags the program to average non-zero pixel values from the input and output files.
When averaging of the files is selected, the non-zero pixel values for a specific image
coordinate are averaged together and the output pixel value is replaced with the new
value.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

The selected input and output file must be the same size.

Unlike the majority of WHIPS programs where the output file must not exist and is created by the
application program, the output file to be modified must currently exist for this application to
execute successfully.

qmos (1) WHIPS v1.2 (8/1992) qmos (1)

Appendix A - 68

EXAMPLE

% qmos -o map.comp -i l26.map

SEE ALSO

 WHIPS(5)

"Digital Mapping of SideScan Sonar Data with the Woods Hole Image Processing system
Software": U.S. Geological Survey Open-File Report 92-536, 90p.

"MAPIT: An improved method for mapping digital sidescan sonar data using the Woods Hole
Image Processing System (WHIPS) Software": U.S. Geological Survey Open-File Report 96-281,
73p.

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

quickview (1) WHIPS v1.1 (6/1992) quickview (1)

Appendix A - 69

NAME

quickview - displays an 8-bit WHIPS netCDF image in an X-11 window

SYNOPSIS

quickview -i input [-a sl,ss,nl,ns] [-c comp] -H]

DESCRIPTION

Program quickview will produce a simple and quick display of a WHIPS netCDF image in an X-
11 window. The image, if necessary, will be automatically compressed to fit the image on the
screen. If the image must be compressed, it will be compressed to present a proportional image
and the compression ratio, as 1:xx.x will be displayed above the image. If the image is being
displayed at full resolution, the word uncompressed will be displayed above the image.

The 24-bit version of the program currently available on the Data General systems will display the
line and sample coordinate relative to the actual image and the pixel value within a message box
located below the image. This option has not been implemented for the 8-bit display version of
the program for the SUN or ULTRIX computer systems.

The following run-line options must be specified and can appear in any order.

-i input

Specifies the WHIPS netCDF file to be processed. The input file may only be 8-bit.

Options: The following run-line commands are optional to the execution of the program.

-a sl,ss,nl,ns

Specifies the sub-area of the input file to be displayed. The sub-area is specified by
entering the origin as the starting line (sl) and starting sample (ss) of the area to be
extracted and the number of lines (nl) and the number of samples (ns) to be extracted.
When specifying the sub-area, the user must specify the sl and ss values. The program
will compute default values for the nl and ns parameters as the remaining lines and
samples in the input image from the user specified starting position.

If the -c option is not specified, the program will automatically compute an image
compression factor, if necessary, to proportionally display the full sub-area selected.

-c comp

Specifies a user selected compression factor (comp) at which to display the image. The
program must be able to display the complete image or selected sub-area using the
specified compression factor.

The selection of a user specified compression factor may override the compression factor
automatically computed by the program. By default, the program computes a
compression factor to be used to proportionally display the full image or user selected
image sub-area. If the user specified compression factor is greater than or equal to the
compression factor computed by the program, the user specified compression factor will
be used to display the image. Otherwise, the program computed compression factor will
be used. The program will always maintain the ability to proportionally display the
image, as well as displaying the entire image or sub-area selected.

-H

quickview (1) WHIPS v1.1 (6/1992) quickview (1)

Appendix A - 70

Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

Quickview can only display an 8-bit image. The display device must be capable of displaying an
8-bit image (i.e. the display device must be 8 or 24-bit deep).

NOTES

When utilizing this program on 8-bit displays, some "flashing" is done when the proper color table
is installed. When the mouse is placed within the image window, the X-11 server installs ab 8-bit,
256 grey-level color table. This color table replaces any previous color table and may result in any
previously displayed X-11 windows outside the image window to become invisible. Moving the
cursor outside the quickview image window will result in the X-11 server restoring the default
color table and restoring any previous X-11 windows that were displayed. When the program is
exited, the default color table is restored to the X-11 server.

EXAMPLE

% quickview -i gloria.cdf

SEE ALSO

WHIPS(5)

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

BUGS

None known.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

raw2whips (1) WHIPS v1.0 (11/1991) raw2whips (1)

Appendix A - 71

NAME

raw2whips - convert a raw image data to a netCDF file for use with WHIPS

SYNOPSIS

raw2whips -i input -o output -l nl -s ns [-b bittyp] [-H]

DESCRIPTION

Program raw2whips converts a raw binary stream image file to a netCDF file for use with
WHIPS.

The following run-line options must be specified and can appear in any order.

-i input_file

Specifies the binary stream input file to be converted. The input file may be 8, 16 or 32-
bit.

-o output_file

Specifies the netCDF output file to be created.

-l nl

Specifies the number of lines (nl) or rows contained in the image data.

-s ns

Specifies the number of samples (ns) or columns contained in the image data.

Options: The following run-line commands are optional to the execution of the program.

-b bittyp

Specifies the bit type (bittyp) of the data being processed. Valid selections are 8, 16 or
32. The default bittyp is 8.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

Currently, the program assumes the image data is in the proper bit and byte order for the selected
bit type. No swabbing takes place.

The output file to be created must not currently exist.

EXAMPLE

% raw2whips -i mickey.raw -o mickey.cdf -l 480 -s 472

SEE ALSO

whips2raw(1), WHIPS(5)

raw2whips (1) WHIPS v1.0 (11/1991) raw2whips (1)

Appendix A - 72

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

BUGS

There appears to be a small problem when transferring files with less than 512 samples from
MIPS unless the number of samples are evenly divisible by four. If this is a bug or merely a quirk,
is not entirely known. One way around the problem is to either enlarge or truncate the file on
MIPS so the number of samples is evenly divisible by four. Then create the raw image with the
MIPS program EXPORT, transfer the file and convert it with raw2whips. Files with image lines
greater than 512 don't seem to be a problem.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

sshead (1) WHIPS v1.4 (11/1993) sshead (1)

Appendix A - 73

NAME

ssdk2dk - create a new sidescan sonar image file by extracting a sub-area and accompanying
sidescan sonar header from an existing WHIPS netCDF sidescan sonar image

SYNOPSIS

ssdk2dk -i input_file -o output_file -a sl,ss,nl,ns [-l linc] [-s sinc] [-H]

DESCRIPTION

The ssdk2dk (sidescan sonar disk-to-disk) program will create a new image file by extracting a
user-specified sub-area from an existing WHIPS netCDF sidescan sonar image file. Along with
the image portion of the data, the accompanying sidescan sonar headers for the selected lines are
carried over to the output file. The image sub-area is selected by specifying the -a option on the
program run-line. The sub-area is specified by the starting line (sl), starting sample (ss), number
of lines (nl) and number of samples (ns) to be extracted. Image area variables are specified
relative to the image origin (sl=1 and ss=1) and is the upper left corner of the matrix.

The program can also be used to reduce or enlarge an input file by specifying the -l and/or -s run-
line options.

The following run-line options must be specified and can occur in any order.

The following run-line options must be specified and can occur in any order.

-i input_file

Specifies the input file to be processed. The input file may be 8, 16 or 32-bit.

The input file must contain the sidescan sonar header information. If the user selects a
file that does not contain the proper information, the program will display the message
ncvarid: variable "date" not found and the processing will stop.

-o output_file

Specifies the input file to be created.

-a sl,ss,nl,ns

Specifies the sub-area of the input file to be extracted. The sub-area is specified by
entering the origin as the starting line (sl) and starting sample (ss) of the area to be
extracted and the number of lines (nl) and the number of samples (ns) to be extracted.

When specifying the sub-area, the user must specify the sl and ss values. The program
will compute default values for the nl and ns parameters as the remaining lines and
samples in the input image from the user specified starting position.

Options: The following run-line commands are optional to the execution of the program.

-l linc

Specifies the line increment (linc) at which to output the lines from the input image sub-
area. A value greater than one will reduce the input image sub-area. A value less than
one will duplicate the input image lines and expands the image area selected. For
example, a line_increment of 2 would result in every other line from the input sub-area
being output. A line_increment of .5 would result in every line from the input image sub-
area being duplicated for output. The default line increment value is 1.

-s sinc

sshead (1) WHIPS v1.4 (11/1993) sshead (1)

Appendix A - 74

Specifies the sample increment (sinc) at which to output the samples from the input
image sub- area. This option is similar to the line increment (-l) option. The default
sample increment value is 1.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

The output file to be created must not currently exist.

NOTES

This program is similar to program dk2dk in that both programs can be used to extract a sub-area
from the image portion of a WHIPS netCDF image file. In addition to processing the image
portion of a sidescan sonar file, program ssdk2dk will process the accompanying sonar header
information. This program should be used if the user wishes to extract a sub-area of a WHIPS
netCDF sidescan sonar image and retain the accompanying sonar header information for the image
lines. If the user desire to extract only the image data from a WHIPS netCDF sidescan sonar
image file and eliminate the sonar header, they may use program dk2dk.

EXAMPLE

The first example would extract all the samples contained in the first 300 lines and associated
sidescan sonar header of the selected image file.

% ssdk2dk -i gloria.slr -o gloria.sub -a 1,1,300

The second example would reduce the input file by transferring every other line and sample,
starting at the image origin, to the output file.

% ssdk2dk -i gloria.slr -o gloria.sub -a 1,1 -l 2 -s 2

SEE ALSO

dk2dk(1)

WHIPS(5)

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

ncvarid: variable "date" not found - the selected input file does not contain the proper
sidescan sonar header information

BUGS

The 16 and 32-bit options of the program have not been completely tested.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

sshead (1) WHIPS v1.4 (11/1993) sshead (1)

Appendix A - 75

NAME

sshead - computes simple heading for a WHIPS netCDF sidescan sonar image

SYNOPSIS

sshead -i input -o output [-h heading_adjustment] [-H]

DESCRIPTION

Program sshead reads a WHIPS netCDF sidescan sonar file and computes the heading value from
swath to swath. The new heading value is then recorded in the sonar-attribute field in the output
file. The heading is computed from the sonar position values contained in the header information
of a WHIPS sidescan sonar image.

The new heading value is computed from consecutive coordinate pairs. Since the first valid
computed heading value is for the second swath of the sonar image, a valid heading cannot be
computed for the first swath. Therefore, the new heading of the first record is assumed to be the
same as the heading for the second swath and is set accordingly.

The user may specify a value to be added to the computed heading value by selecting the program
option -h. This allows the user a simple way to adjust the heading value computed from the
navigation if they feel the navigation does not accurately reflect the track of the sonar fish.

The following run-line options must be specified and can occur in any order.

-i input_file

Specifies the input file to be processed. The input file must be 8-bit.

The input file must contain the sidescan sonar header information. If the user selects a
file that does not contain the proper information, the program will display the message
ncvarid: variable "date" not found and the processing will stop.

-o output_file

Specifies the output file to be created. The output file contains the sidescan sonar header
information from the input file with the new heading values.

Options: The following run-line commands are optional to the execution of the program.

-h heading_adjustment

Specifies a heading adjustment value to be added to the computed heading value.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

Program currently accepts only 8-bit image files. The input file must contain the sidescan sonar
header information.

The output file to be created must not currently exist.

EXAMPLE

% sshead -i gloria.wcox -o gloria.head

sshead (1) WHIPS v1.4 (11/1993) sshead (1)

Appendix A - 76

SEE ALSO

WHIPS(5), whips_sonar(5)

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

ncvarid: variable "date" not found - the selected input file does not contain the proper
sidescan sonar header information

atan2: DOMAIN error - may be displayed during programming. Processing continues until the
end-of-file is encountered and the file is useable. In the past, the source
of this error has been traced to improper fish position values in the
header. Check the sidescan sonar header for consecutive records with
the same position.

Version 1.3 of the program was modified to compare consecutive
positions, and when duplicates are found, output the last good heading
value computed. This additional check will add some time to the
processing but will hopefully eliminate the error problem. This change,
however, does not eliminate the need to clean-up the navigation data
set as much as possible to eliminate the large number of consecutive
duplicate positions that can be found in something like the EG&G data
sets. It is also highly recommended that the data set have good unique
positions at the beginning of the file so the heading can be computed
accurately to start.

AUTHOR/MAINTENANCE

Valerie Paskevich
U. S. Geological Survey
Coastal and Marine Geology Program
384 Woods Hole Rd.
Woods Hole, MA 02543

sumss (1) WHIPS v1.4 (11/1993) sumss (1)

Appendix A - 77

NAME

sumss - summarize the information contained in a sidescan sonar header for mapping

SYNOPSIS

sumss -i input [-P print file] [-h heading] [-H]

DESCRIPTION

Program sumss will summarize the contents of the sidescan sonar header from the user specified
WHIPS netCDF sonar image. The summary information contains the date, time, position and fish
heading for the first and last record in the file. That information is followed by a report of line
numbers where the specified heading value (-h) is exceeded. This information may be null if the
specified heading value is not exceeded. The final information is a report on the minimum and
maximum nadir coordinates.

The headings are checked using the first heading value contained in the sonar header. As the fish
heading values are read from the file, the two values are compared. When the difference in the
two heading values is equal to or greater than the specified heading (-h), the line number and fish
heading value that exceed the specified tolerance are output to the stdout device and program print
file. The heading value last read becomes the heading value used for future comparisons. When
the heading change again exceeds the user-specified value, the program repeats the procedure for
flagging the line and swapping the heading value for future comparisons.

The program provides a quick way to check the area covered by the file and any possible course
changes contained in the file in anticipation of mapping the image. The summary information is
displayed on the user's terminal (std_out) but the std_out information may be output to a file by re-
direction of std_out or selecting the -P option on the run line. The information reported to the
std_out file is also output to the program print file.

The following run-line options must be specified and can appear in any order.

-i input

Specifies the input file to be processed. The input file must be 8-bit.

The selected file must contain the sidescan sonar header information. If the user selects a
file that does not contain the proper information, the program will display the message
ncvarid: variable "date" not found and the processing will stop.

Options: The following run-line commands are optional to the execution of the program.

-h heading

Specifies a user selected heading value. The program will then check the changes in fish
heading (heading) and will report the line numbers in the file when a change in heading
exceeds the specified value. The default heading value is 15.

-P print_file

Specifies the print file to re-direct the output information to.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

sumss (1) WHIPS v1.4 (11/1993) sumss (1)

Appendix A - 78

The input file selected must contain the required sidescan sonar header information.

EXAMPLE

The example below shows a simple execution of the program and resulting output.

% sumss -i 26.ss

 First record:
 1982 1 30 8 0 0.000 (30)
 26.991600 -88.106300 -- heading: 153.5

 Last record (720):
 1982 1 30 11 59 0.666 (30)
 26.509069 -88.022507 -- heading: 171.2

 Heading change to 168.5 at line 557

 Nadir limits:
 Latitude = 26.991600 26.509069
 Longitude = -88.106300 -88.020897

The following is an example requesting the program to report when the sonar heading changes
exceed 5o.

% sumss -i 26.ss -h 5

 First record:
 1982 1 30 8 0 0.000 (30)
 26.991600 -88.106300 -- heading: 153.5

 Last record (720):
 1982 1 30 11 59 0.666 (30)
 26.509069 -88.022507 -- heading: 171.2

 Heading change to 158.5 at line 294
 Heading change to 163.6 at line 391
 Heading change to 168.6 at line 559

 Nadir limits:
 Latitude = 26.991600 26.509069
 Longitude = -88.106300 -88.020897

SEE ALSO

listhdr(1)

WHIPS(5), whips_sonar(5)

DIAGNOSTICS

sumss (1) WHIPS v1.4 (11/1993) sumss (1)

Appendix A - 79

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

ncvarid: variable "date" not found - the selected input file does not contain the proper sidescan
sonar header information

BUGS

None known.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

Appendix A - 80

whips2raw (1) WHIPS v1.0 (11/1991) whips2raw (1)

Appendix A - 81

NAME

whips2raw - convert a WHIPS netCDF image file to a raw, binary image file

SYNOPSIS

whips2raw -i input -o output [-H]

DESCRIPTION

Program whips2raw converts a WHIPS netCDF image file to a raw binary stream image file. The
output of the program may then be converted to other image formats or imported to other software
packages.

The following run-line options must be specified and can appear in any order.

-i input

Specifies the netCDF file to be processed.

-o output

Specifies the binary stream input file to be converted. The input file may be 8, 16 or 32-
bit.

Options: The following run-line commands are optional to the execution of the program.

-H
Displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

None known.

EXAMPLE

% whips2raw -i mickey.cdf -o mickey.raw

SEE ALSO

raw2whips(1), whips2pgm(1)

WHIPS(5)

DIAGNOSTICS

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

BUGS

None known.

AUTHOR/MAINTENANCE

Valerie Paskevich, USGS, Woods Hole, MA

Appendix A - 82

Appendix B - 83

APPENDIX B

Below is a list of the files used to complete the digital mapping procedure for Pass-13. Included is a listing
of the proj script file and the text file containing the map boundaries. Those files, utm-proj and
bounds.dat, have been underlined to help identify their proper reference place.

% more utm-proj
proj +proj=utm +lon_0=-111 -r -s -m 1:100 -f `%.0f' bounds.dat -

% more bounds.dat
-34.25 -112.75
-34.25 -112
-35 -112
-35 -112.75

% avg_heading -i pass13.head -o pass13.avg_head -l 9
% gss_vel -i pass13.avg_head -r 45 -s 490 -l 1,320 | utm-proj | projss
-o pass13.map

Appendix B - 84

Appendix C - 85

APPENDIX C

Below is a summary of the steps used to complete the processing of the east and west components of the
side-scan sonar mapping example. Processing of the component images to complete the east images was
accomplished by selecting the lines to be processed from the individual passes. Both the east and west
components were completed by running a series of mode and low-pass filters to fill the "holes" contained in
the images.

% avg_heading -i pass12.head -o pass12.avg_head -l 9
% avg_heading -i pass13.head -o pass13.avg_head -l 9
% gss_vel -i pass12.avg_head -r 45 -s 490 -l 570,720 | utm-proj | projss -o
pass12.map
% gss_vel -i pass13.avg_head -r 45 -s 490 -l 1,320 | utm-proj | projss -o
pass13.map
% cp pass12.map east.map
% qmos -i pass13.map -o east.map
% mode3 -i east.map -o east.mode3 -z -Z
% mode5 -i east.mode3 -o east.mode5 -z -Z
% mode3 -i east.mode5 -o east.mode3a -z -Z
% mode5 -i east.mode3a -o east.mode5a -z -Z
% filter -i east.mode5a -o east.lpfz -z -b 3,3

The processing summary below shows the steps utilized to complete the west component of the side-scan
sonar mapping example. To map the data for these areas, all the lines in the sonar swaths were processed.

% avg_heading -i pass25.head -o pass25.avg_head -l 9
% avg_heading -i pass26.head -o pass26.avg_head -l 9
% avg_heading -i pass37.head -o pass37.avg_head -l 9
% avg_heading -i pass38.head -o pass38.avg_head -l 9
% gss_vel -i pass25.avg_head -r 45 -s 490 | utm-proj | projss -o pass25.map
% gss_vel -i pass26.avg_head -r 45 -s 490 | utm-proj | projss -o pass26.map
% gss_vel -i pass37.avg_head -r 45 -s 490 | utm-proj | projss -o pass37.map
% gss_vel -i pass38.avg_head -r 45 -s 490 | utm-proj | projss -o pass38.map
% cp pass25.map west.map
% qmos -i pass26.map -o west.map
% qmos -i pass37.map -o west.map
% qmos -i pass38.map -o west.map
% mode3 -i west.map -o west.mode3 -z -Z
% mode5 -i west.mode3 -o west.mode5 -z -Z
% mode3 -i west.mode5 -o west.mode3a -z -Z
% mode5 -i west.mode3a -o west.mode5a -z -Z
% filter -i west.mode5a -o west.lpfz -z -b 3,3

Appendix C - 86

Appendix D - 87

APPENDIX D

Below is a summary of the steps used to complete the mapping and processing of the three components
(east, west and south) of the two degree GLORIA sidescan sonar map. Mapping was accomplished in a
sub-directory from where the individual passes were stored. The required programs and their parameters,
along with any UNIX required commands, were entered into a file and executed as a single script. Two
additional script files, utm-proj and bounds.dat, were required to complete the processing. Those files are
listed at the end of the processing script.

% more do-map2

**
do_east component
--
#
rm -f pass41*.map pass42*.map pass43*.map
rm -f pass11.map pass12.map pass13*.map
rm -f pass26E.map
#
avg_heading -i ../pass41.head -o pass41.avg_head -l 9
gss_vel -i pass41.avg_head -l 400,720 -r 45 -s 490 -R | utm-proj | projss -o
pass41.map
rm pass41.avg_head
cp pass41.map east.map
#
avg_heading -i ../pass42.head -o pass42.avg_head -l 9
gss_vel -i pass42.avg_head -r 45 -s 490 -R | utm-proj | projss -o pass42.map
rm pass42.avg_head
qmos -i pass42.map -o east.map
#
avg_heading -i ../pass43.head -o pass43.avg_head -l 9
gss_vel -i pass43.avg_head -r 45 -s 490 | utm-proj | projss -o pass43.map
rm pass43.avg_head
qmos -i pass43.map -o east.map
#
avg_heading -i ../pass11.head -o pass11.avg_head -l 9
gss_vel -i pass11.avg_head -r 45 -s 464 | utm-proj | projss -o pass11.map
rm pass11.avg_head
qmos -i pass11.map -o east.map
#
avg_heading -i ../pass12.head -o pass12.avg_head -l 9
gss_vel -i pass12.avg_head -r 45 -s 464 | utm-proj | projss -o pass12.map
rm pass12.avg_head
qmos -i pass12.map -o east.map
#
avg_heading -i ../pass13.head -o pass13.avg_head -l 9
gss_vel -i pass13.avg_head -r 45 -s 490 -R | utm-proj | projss -o pass13.map
rm pass13.avg_head
qmos -i pass13.map -o east.map
#
avg_heading -i ../pass26.head -o pass26.avg_head -l 9
gss_vel -i pass26.avg_head -r 45 -s 464 -l 605,720 | utm-proj | projss -o
pass26E.map
qmos -i pass26E.map -o east.map
save pass26.avg_head for west.map and south.map processing
#
avg_heading -i ../pass27.head -o pass27.avg_head -l 9

Appendix D - 88

gss_vel -i pass27.avg_head -r 45 -s 464 | utm-proj | projss -o pass27.map
rm pass27.avg_head
qmos -i pass27.map -o east.map
#
--
fill gaps in east component map
--
#
rm -f east.lpfz
#
mode3 -i east.map -o east.mode3 -z -Z
mode5 -i east.mode3 -o east.mode5 -z -Z
#
rm east.mode3
#
mode3 -i east.mode5 -o east.mode3 -z -Z
#
filter -i east.mode3 -o east.lpfz -z -b 3,3
rm east.mode3 east.mode5
#
**
do_west component
--
#
rm -f pass37*.map pass38*.map pass39.map
rm -f pass25*.map pass26W.map
#
avg_heading -i ../pass37.head -o pass37.avg_head -l 9
gss_vel -i pass37.avg_head -r 45 -s 490 -R | utm-proj | projss -o pass37.map
rm pass37.avg_head
cp pass37.map west.map
#
avg_heading -i ../pass38.head -o pass38.avg_head -l 9
gss_vel -i pass38.avg_head -r 45 -s 490 -R | utm-proj | projss -o pass38.map
rm pass38.avg_head
qmos -i pass38.map -o west.map
#
avg_heading -i ../pass39.head -o pass39.avg_head -l 9
gss_vel -i pass39.avg_head -r 45 -s 464 | utm-proj | projss -o pass39.map
rm pass39.avg_head
qmos -i pass39.map -o west.map
#
avg_heading -i ../pass25.head -o pass25.avg_head -l 9
gss_vel -i pass25.avg_head -r 45 -s 464 -R | utm-proj | projss -o pass25.map
rm pass25.avg_head
qmos -i pass25.map -o west.map
#
pass26.avg_head created during processing of east.map
#
gss_vel -i pass26.avg_head -r 45 -s 464 -l 1,302 | utm-proj | projss -o
pass26W.map
qmos -i pass26W.map -o west.map
#
--
fill gaps in west component map
--
#
rm -f west.lpfz
#
mode3 -i west.map -o west.mode3 -z -Z
mode5 -i west.mode3 -o west.mode5 -z -Z

Appendix D - 89

#
rm west.mode3
#
mode3 -i west.mode5 -o west.mode3 -z -Z
#
filter -i west.mode3 -o west.lpfz -z -b 3,3
rm west.mode3 west.mode5
#
**
do_south component
--
#
pass26.avg_head created during processing of east.map
#
gss_vel -i pass26.avg_head -r 45 -s 446 -l 324,588 | utm-proj | projss -o
pass26S.map
rm pass26.avg_head
#
--
fill gaps in south component map
--
#
cp pass26S.map south.map
#
mode3 -i south.map -o south.mode3 -z -Z
mode5 -i south.mode3 -o south.mode5 -z -Z
#
rm south.mode3
#
mode3 -i south.mode5 -o south.mode3 -z -Z
#
filter -i south.mode3 -o south.lpfz -z -b 3,3
rm south.mode3 south.mode5

% more utm-proj

proj +proj=utm +lon_0=-111 -r -s -m 1:100 -f `%.0f' bounds.dat -

% more bounds.dat

-34 -114
-34 -112
-36 -112
-36 -114

Appendix D - 90

91

REFERENCES

Chavez, Pat S., 1984, U. S. Geological Survey Mini Image Processing System (MIPS), Open-File Report
84-880, 12 p.

Chavez, Pat S., 1986, Processing Techniques for Digital Sonar Images from GLORIA, Photogrammetric
Engineering and Remote Sensing, vol. 52, No. 8, pp. 1133-1145.

Evenden, Gerald I., 1990, Cartographic Projection Procedures for the UNIX Environment - A User's
Manual, Open-File Report 90-284, 62 p.

Miller, Richard L., Dwan, Fa S. and Cheng, Chiu-Fu, 1991, Digital Preprocessing Techniques for GLORIA
II Sonar Images, Geo-Marine Letters, 11:32-31.

Paskevich, Valerie, 1992, Woods Hole Image Processing System Software Implementation: Using NetCDF
as a Software Interface for Image Processing, Open-File Report 92-25, 72 p.

Paskevich, Valerie, 1992, Digital Processing of Sidescan Sonar data with the Woods Hole Image
Processing System Software, Open-File Report 92-204, 9 p.

Snyder, J.P., 1987, Map projections - A working manual: U.S. Geological Survey Professional Paper 1395,
383 p.

Snyder, J.P. and Voxland, R.M., 1989, An album of map projections: U. S. Geological Survey Professional
Paper 1453, 249 p.

Unidata Program Center, NetCDF User's Guide: An Interface for Data Access, v1.11, March 1991, 150 p.

